

XPW Transition Checkride Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What is the maximum number of oxygen blowout discs that can be missing?**
 - A. 1**
 - B. None**
 - C. 2**
 - D. 3**

- 2. Can you practice no flap full stops during flight training?**
 - A. Yes**
 - B. No**
 - C. Only with instructor approval**
 - D. Yes, but only at high altitudes**

- 3. At what percentage of N2 should the EFC come on during engine start?**
 - A. 28% N2**
 - B. 38% N2**
 - C. 48% N2**
 - D. 58% N2**

- 4. What is the primary calculation adjustment made with split markers?**
 - A. Assessing different weights of cargo**
 - B. Accounting for multi-engine performance**
 - C. Measuring atmospheric conditions**
 - D. Considering aircraft configuration**

- 5. What must a pilot be cautious about when applying brakes from the co-pilot's side?**
 - A. They may accidentally engage the thrust reversers**
 - B. They could cause an uncontrolled skid**
 - C. They might lock the gear in place**
 - D. They could lead to a reduction of braking efficiency**

6. What could result from resetting a popped circuit breaker in the fuel system?

- A. Improved fuel efficiency**
- B. Potential for explosion due to short circuit**
- C. Normal operation without any risk**
- D. Increased fuel pressure**

7. What is the minimum width of a runway?

- A. 75 feet**
- B. 100 feet**
- C. 125 feet**
- D. 150 feet**

8. How far out does the EMER L/G Down handle need to be pulled?

- A. 5 inches**
- B. 8 inches**
- C. 10 inches**
- D. 12 inches**

9. What is the maximum DC load with one generator operating in the air below 32,500 feet?

- A. 400 Amps**
- B. 350 Amps**
- C. 280 Amps**
- D. 500 Amps**

10. What is the electrical load drawn by the left load bus?

- A. 253 Amps**
- B. 82 Amps**
- C. 21 Amps**
- D. 15 Amps**

Answers

SAMPLE

1. B
2. B
3. B
4. B
5. D
6. B
7. B
8. C
9. A
10. C

SAMPLE

Explanations

SAMPLE

1. What is the maximum number of oxygen blowout discs that can be missing?

- A. 1**
- B. None**
- C. 2**
- D. 3**

The correct response indicates that no oxygen blowout discs can be missing. This is important because oxygen blowout discs are critical safety components designed to prevent excessive pressure buildup in systems containing oxygen. If one or more of these discs are absent, there is an increased risk of failure or hazardous situations arising due to uncontrolled pressure release. Each disc has a designated role in ensuring that the system can safely vent excess pressure before it reaches a level that could lead to catastrophic failure. Therefore, having none missing is essential for maintaining the integrity and safety of the oxygen system. Ensuring that all blowout discs are present and functioning properly is a key aspect of safety protocols in aviation and other applications where oxygen is used under pressure.

2. Can you practice no flap full stops during flight training?

- A. Yes**
- B. No**
- C. Only with instructor approval**
- D. Yes, but only at high altitudes**

Practicing no flap full stops during flight training is generally not advisable due to safety concerns and the potential for increased risk during landing. Full stop landings without flaps can significantly alter the aircraft's handling characteristics and landing performance, making it a more challenging maneuver. This practice might limit the pilot's ability to execute a safe landing, especially for those still developing their skills or who are not yet fully proficient in advanced landing techniques. In many flight training programs and regulations, the use of flaps is encouraged to ensure safety and control, particularly for students who may not have extensive experience in managing aircraft configurations during landing. Therefore, conducting no flap landings without the necessity or the context of a specific training scenario—such as an emergency procedure—may be restricted and should not be considered a standard practice during training flights.

3. At what percentage of N2 should the EFC come on during engine start?

- A. 28% N2**
- B. 38% N2**
- C. 48% N2**
- D. 58% N2**

The correct percentage at which the Engine Fuel Control (EFC) system is expected to activate during engine start is 38% N2. This activation point is critical because it ensures that the engine receives the appropriate amount of fuel to achieve optimal ignition and combustion conditions as the compressor reaches a sufficient speed. At this point, the engine has built enough airflow due to the rotating speed of the N2 spool, allowing the EFC to begin injecting fuel properly. This helps establish stable engine parameters and enhances the likelihood of a successful start, minimizing the risk of flameout or excessive starter engagement time. Understanding the operational characteristics of the engine, including the significance of timing for EFC activation, is essential for safe and effective engine management during start-up procedures.

4. What is the primary calculation adjustment made with split markers?

- A. Assessing different weights of cargo**
- B. Accounting for multi-engine performance**
- C. Measuring atmospheric conditions**
- D. Considering aircraft configuration**

The primary calculation adjustment made with split markers relates to accounting for multi-engine performance. Split markers are used on the flight computer or performance calculation device to help pilots evaluate different performance variables that affect multi-engine aircraft. Such considerations may include the impact of engine failures, weight distribution, and the performance characteristics of each engine in operation or during an engine-out scenario. When assessing performance in a multi-engine environment, the use of split markers allows pilots to adjust calculations for factors unique to multi-engine operations, ensuring a more accurate understanding of the aircraft's performance envelope under various conditions. This is crucial for safe flight planning and decision-making, especially during critical phases such as takeoff and landing, where engine performance can significantly influence required takeoff distance, climb rates, and safety margins. Other choices, while pertinent to overall flight operations and performance calculations, do not specifically denote the primary use of split markers as they focus on different aspects such as cargo weight, atmospheric conditions, or aircraft configuration, which can be relevant but are not the main function of split markers in addressing multi-engine performance considerations.

5. What must a pilot be cautious about when applying brakes from the co-pilot's side?

- A. They may accidentally engage the thrust reversers**
- B. They could cause an uncontrolled skid**
- C. They might lock the gear in place**
- D. They could lead to a reduction of braking efficiency**

When applying brakes from the co-pilot's side, a pilot must understand that it could lead to a reduction of braking efficiency due to the difference in control dynamics between the pilot and co-pilot positions. In certain aircraft configurations, the braking system may respond differently based on the inputs from different locations within the cockpit. For example, it's possible that the brake pedals on the co-pilot's side may not provide the same level of hydraulic pressure or feel as those on the pilot's side, potentially leading to uneven braking performance or less effective braking overall. Furthermore, applying brakes from a different position can also result in challenges related to awareness and control, particularly if the pilot on that side is not fully accustomed to the specific aircraft's braking system. Overall, understanding these nuances is critical for maintaining optimal control during critical phases of flight, especially during landing or aborted takeoff scenarios.

6. What could result from resetting a popped circuit breaker in the fuel system?

- A. Improved fuel efficiency**
- B. Potential for explosion due to short circuit**
- C. Normal operation without any risk**
- D. Increased fuel pressure**

Resetting a popped circuit breaker in the fuel system can lead to a dangerous situation, including the potential for an explosion due to a short circuit. Circuit breakers are designed to trip when there is an electrical fault or excessive current draw, which often indicates a problem such as a short circuit in the wiring or a malfunctioning component. If the circuit breaker is reset without addressing the underlying issue, it allows electricity to flow again, potentially reinitiating the fault. This can result in overheating, leading to arcing or sparks, which can ignite fuel vapors in the area. Therefore, it's crucial to diagnose and resolve the problem that caused the breaker to trip before resetting it to maintain safety and prevent catastrophic failures.

7. What is the minimum width of a runway?

- A. 75 feet
- B. 100 feet**
- C. 125 feet
- D. 150 feet

The minimum width of a runway is established to ensure safe takeoff and landing operations for various types of aircraft. In many contexts, especially related to general aviation and regional airports, a runway width of 100 feet is considered the minimum. This width provides enough space for aircraft of different sizes, enhances safety margins during operations, and offers sufficient clearance for engine nacelles, wings, and other components during critical phases of flight. Wider runways, such as those of 125 feet or more, are often designed for larger commercial jets, but the critical minimum standard in many regulations and guidelines remains at 100 feet. This standard takes into account factors such as aircraft maneuverability, crosswind landing effects, and the need for sufficient error margins during approaches and departures.

8. How far out does the EMER L/G Down handle need to be pulled?

- A. 5 inches
- B. 8 inches
- C. 10 inches**
- D. 12 inches

The EMER L/G Down handle needs to be pulled out to a distance of 10 inches to ensure that the landing gear is properly deployed. This specification is critical for a successful emergency landing gear extension, as it allows the mechanical linkages within the landing gear system to fully engage and unlock the landing gear doors. Pulling the handle the correct distance is essential to avoid incomplete or malfunctioning deployment, which could jeopardize safety during landing. When the handle is pulled to the specified 10 inches, it achieves the necessary mechanical advantage to activate the emergency system designed to guide the landing gear into the down and locked position. Understanding this measurement is crucial for pilots to respond effectively in an emergency situation where normal landing gear operation has failed.

9. What is the maximum DC load with one generator operating in the air below 32,500 feet?

- A. 400 Amps**
- B. 350 Amps**
- C. 280 Amps**
- D. 500 Amps**

The maximum DC load with one generator operating below 32,500 feet in the aircraft context is established to ensure the generator is not overloaded, which can lead to failure or decreased performance. In this case, the figure of 400 Amps is the limit designated by manufacturer specifications to maintain optimal performance and safety during operations. This specification is crucial because it allows the aircraft to operate within safe electrical load parameters while ensuring that all essential systems that rely on DC power function effectively. As the altitude increases or depending on the number of generators in operation, the maximum allowable load may change. It is essential for pilots and operators to be aware of these limits to manage the aircraft's electrical load properly and avoid risking generator failure during flight.

10. What is the electrical load drawn by the left load bus?

- A. 253 Amps**
- B. 82 Amps**
- C. 21 Amps**
- D. 15 Amps**

To determine the electrical load drawn by the left load bus effectively, it is essential to understand how loads are distributed across the bus in an aircraft's electrical system. Each aircraft's load management system tracks the power distribution and allows for specific monitoring of current draw from various buses. In many systems, operational parameters and maintenance manuals provide the electrical specifications and loads for different scenarios. When assessing the left load bus, a correct load reading can be achieved by using the appropriate measurement techniques or diagnostic tools provided during the aircraft's operation. The figure of 21 Amps likely comes from either the aircraft's electrical load data or from monitoring that can show current usage at a given moment. This measurement indicates that the left load bus is functioning as intended, supporting the necessary components without exceeding its design limitations. Other values, such as 253 Amps, 82 Amps, and 15 Amps, do not align with typical operational loads for a left load bus scenario, suggesting either a miscalculation or a misunderstanding of the load characteristics required for that system. Recognizing these typical metrics is crucial for safe and efficient operation, as exceeding load ratings can damage electrical systems and components.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://xpwtranscheckride.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE