

WJEC Biology Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

1. What is the main action of white blood cells during an infection?

- A. Increase blood flow**
- B. Foster tissue repair**
- C. Fight infections**
- D. Produce energy**

2. What components make up genotypes?

- A. Physical traits of an organism**
- B. The two alleles present in an organism**
- C. The visible characteristics of a species**
- D. Both the dominant and recessive traits**

3. What term refers to the genetic makeup of an organism?

- A. Phenotype**
- B. Genotype**
- C. Chromosome**
- D. Allele**

4. Why do scientists prefer using Latin names for species?

- A. Latin is a language of scholars**
- B. Latin names are shorter and easier**
- C. Latin is a universal language**
- D. Latin names are more traditional**

5. Which statement best describes the relationship of a niche with species interactions?

- A. A niche is solely based on the habitat of a species**
- B. A niche defines how a species interacts with the environment and others**
- C. Niches are irrelevant to species competition**
- D. Niches encompass secondary consumers only**

6. What is the primary role of bile in digestion?

- A. To regulate blood sugar levels**
- B. To emulsify fats for easier digestion**
- C. To absorb nutrients from food**
- D. To produce digestive enzymes**

7. What role do decomposers play in an ecosystem?

- A. They produce energy through photosynthesis**
- B. They compete for resources with primary producers**
- C. They break down dead organic material, recycling nutrients back into the soil**
- D. They provide habitat for microorganisms**

8. What is the process by which plants convert sunlight into energy called?

- A. Respiration**
- B. Transpiration**
- C. Photosynthesis**
- D. Fermentation**

9. What do drug trials primarily involve?

- A. Patient feedback and surveys**
- B. Animal testing or the use of computer stimulations**
- C. Field studies in communities**
- D. Direct human experimentation**

10. Which of the following is NOT a phase of primary succession?

- A. Soil development**
- B. Species diversification**
- C. Habitat destruction**
- D. Establishment of pioneer species**

Answers

SAMPLE

1. C
2. B
3. B
4. C
5. B
6. B
7. C
8. C
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. What is the main action of white blood cells during an infection?

- A. Increase blood flow**
- B. Foster tissue repair**
- C. Fight infections**
- D. Produce energy**

The primary role of white blood cells during an infection is to fight infections. These cells are a crucial component of the immune system and serve various functions to protect the body from pathogens such as bacteria, viruses, and other foreign invaders. When an infection occurs, white blood cells are activated and mobilized to the site of infection, where they can identify and eliminate the pathogens. They do this through several mechanisms, including engulfing and digesting the invaders (a process called phagocytosis), producing antibodies that specifically target pathogens, and releasing signaling molecules that help coordinate the immune response. This action is essential for controlling and resolving infections, thereby helping to maintain overall health. The other options hint at important processes in the body but are not the main action of white blood cells during an infection. For instance, while increased blood flow can occur as part of the inflammatory response, it is not the primary function of white blood cells. Similarly, tissue repair is a later response that may involve white blood cells, but their immediate role is combatting the infection. Producing energy is unrelated to the function of white blood cells in the context of an infection management.

2. What components make up genotypes?

- A. Physical traits of an organism**
- B. The two alleles present in an organism**
- C. The visible characteristics of a species**
- D. Both the dominant and recessive traits**

The correct component that makes up genotypes is the two alleles present in an organism. Genotype refers specifically to the genetic constitution of an individual, which is represented by the specific alleles inherited from each parent. Each organism has two alleles for every gene—one inherited from the mother and one from the father. These alleles can either be identical (homozygous) or different (heterozygous), and they determine the organism's genetic makeup. Understanding genotypes is crucial, as they influence phenotypes, which are the observable characteristics or traits of an organism. However, genotypes themselves are not defined by physical traits, visible characteristics, or the expressions of dominant and recessive traits alone; rather, they are the actual allelic combinations present at specific gene loci. This clarification highlights the fundamental role of alleles in defining an organism's genetic identity.

3. What term refers to the genetic makeup of an organism?

- A. Phenotype
- B. Genotype**
- C. Chromosome
- D. Allele

The term that refers to the genetic makeup of an organism is genotype. The genotype encompasses all the genes that an organism carries, which determines the potential traits and characteristics it may express. For instance, in a plant, the genotype would include the specific alleles inherited from its parents, influencing traits like flower color, height, or disease resistance. The genotype provides the foundational genetic information that interacts with environmental factors to produce the observable traits, known as the phenotype. Phenotype refers to the physical expression of traits, which is a result of the genotype interacting with environmental influences. Chromosomes are structures within the cell that carry genetic information, but they do not describe the genetic makeup itself. Alleles are variants of a gene and contribute to the genotype, but they do not encompass the entirety of an organism's genetic makeup. Thus, genotype is the most accurate term for describing the complete genetic composition of an organism.

4. Why do scientists prefer using Latin names for species?

- A. Latin is a language of scholars
- B. Latin names are shorter and easier
- C. Latin is a universal language**
- D. Latin names are more traditional

Scientists prefer using Latin names for species primarily because Latin serves as a universal language. This universality ensures that researchers from different countries and linguistic backgrounds can communicate unambiguously about specific species. Scientific naming, or binomial nomenclature, assigns each species a unique Latin name composed of two parts: the genus and the species. This system was established by Carl Linnaeus and is recognized globally, minimizing confusion that may arise from local or common names, which can vary widely. The use of Latin helps standardize the naming conventions in biology, ensuring that when a species is referred to by its Latin name, it is understood to refer to the same organism across different languages and regions. This clarity is essential in scientific discourse and contributes to the consistency and accuracy of biological classification. While the idea that Latin is a language of scholars does hold some truth, the primary advantage lies in its status as a universal linguistic framework recognizable to scientists around the world. Shorter and easier names may be appealing for casual use, and tradition plays a role in many scientific practices, but the pressing need for consistent communication across the global scientific community is the key reason for the preference for Latin names.

5. Which statement best describes the relationship of a niche with species interactions?

- A. A niche is solely based on the habitat of a species**
- B. A niche defines how a species interacts with the environment and others**
- C. Niches are irrelevant to species competition**
- D. Niches encompass secondary consumers only**

The statement that a niche defines how a species interacts with the environment and others accurately captures the concept of a niche in ecology. A niche encompasses not only the physical habitat that a species occupies but also its role within that habitat, including how it obtains resources, what it eats, its behavior, and its interactions with other organisms. This includes relationships such as predator-prey dynamics, competition for resources, and symbiotic relationships. Understanding a species' niche is crucial for comprehending its ecological role and the relationships that shape the structure of an ecosystem. Thus, option B highlights the complexity of species interactions and the multifaceted nature of niches, making it the most comprehensive and correct choice in this context.

6. What is the primary role of bile in digestion?

- A. To regulate blood sugar levels**
- B. To emulsify fats for easier digestion**
- C. To absorb nutrients from food**
- D. To produce digestive enzymes**

The primary role of bile in digestion is to emulsify fats for easier digestion. Bile, which is produced by the liver and stored in the gallbladder, contains bile salts that break down large fat globules into smaller droplets. This process increases the surface area of fats, making them more accessible to digestive enzymes, particularly pancreatic lipase, which can then efficiently break down these fats into fatty acids and glycerol for absorption. This emulsification is crucial for the digestion and absorption of dietary fats, which are otherwise difficult to digest due to their hydrophobic nature. Without bile, the digestion of fats would be significantly less effective, leading to poor nutrient absorption. Thus, the role of bile is fundamental in facilitating the digestion of lipids in the small intestine.

7. What role do decomposers play in an ecosystem?

- A. They produce energy through photosynthesis
- B. They compete for resources with primary producers
- C. They break down dead organic material, recycling nutrients back into the soil**
- D. They provide habitat for microorganisms

Decomposers play a critical role in ecosystems primarily by breaking down dead organic material, such as fallen leaves, dead animals, and other organic waste. This decomposition process is essential as it recycles nutrients back into the soil, making them available for plants and other organisms. Without decomposers, dead matter would accumulate, and nutrients would remain locked within that matter, leading to nutrient depletion in the soil over time. This recycling process maintains the balance within the ecosystem, ensuring that energy and nutrients flow efficiently among producers (like plants), consumers (like animals), and decomposers. It supports plant growth and helps sustain various life forms by replenishing the nutrient cycle, thus underpinning the health of the entire ecosystem. In contrast, the other roles mentioned are filled by different types of organisms. For example, photosynthesis is carried out by producers, while competitive interactions are usually observed between primary producers and other organisms, not decomposers. Habitat provisions are more typically associated with larger organisms in an ecosystem, rather than the specific function of decomposing materials.

8. What is the process by which plants convert sunlight into energy called?

- A. Respiration
- B. Transpiration
- C. Photosynthesis**
- D. Fermentation

The process by which plants convert sunlight into energy is called photosynthesis. During photosynthesis, plants use chlorophyll in their leaves to capture sunlight, which then powers the conversion of carbon dioxide from the air and water from the soil into glucose and oxygen. This is a vital process not only for the plants themselves but also for the environment, as it produces oxygen that is essential for most living organisms and serves as the foundation of the food chain. In photosynthesis, the energy stored in glucose can later be used by the plant for growth, development, and other metabolic processes. This process occurs mainly in the chloroplasts of plant cells and involves a series of complex reactions, primarily during daylight hours when sunlight is available. The importance of photosynthesis cannot be overemphasized, as it is crucial for sustaining life on Earth by providing energy and oxygen.

9. What do drug trials primarily involve?

- A. Patient feedback and surveys
- B. Animal testing or the use of computer stimulations**
- C. Field studies in communities
- D. Direct human experimentation

Drug trials primarily involve a series of rigorous testing phases to evaluate the safety and efficacy of a new drug before it reaches the market. This process includes both animal testing and, increasingly, the use of computer simulations to predict how the drug behaves in the body. Animal testing allows researchers to understand the pharmacokinetics and pharmacodynamics of a drug, providing critical information on how it affects living organisms and identifying potential side effects. Computer simulations can model these interactions, reducing the number of animal tests needed and refining the drug development process. While patient feedback and surveys are utilized in later phases of drug trials to gather data on how the drug performs in human populations, these aspects come into play after the initial phases where animal testing and simulations are conducted. Direct human experimentation occurs in later phases of clinical trials but is not typically the primary focus before advancing to these stages. Field studies in communities, while valuable for gathering population data, are not the mainstay of drug trials. Thus, the strong emphasis on the initial experimentation with animals and simulations makes this the correct answer.

10. Which of the following is NOT a phase of primary succession?

- A. Soil development
- B. Species diversification
- C. Habitat destruction**
- D. Establishment of pioneer species

Primary succession is a natural process that occurs in an environment that is previously devoid of life, often following events such as volcanic eruptions or glacial retreats. In this context, the phases of primary succession can be outlined as follows: Soil development is a critical phase because the initial environment may have little to no soil. As pioneer species, such as lichens and mosses, colonize the barren landscape, their biological activity contributes to soil formation. Over time, these organisms break down rock and organic matter, which helps create a more hospitable environment for other plants. Species diversification follows the establishment of pioneer species. Once these initial colonizers create a more stable environment, other species, including more complex plants and animals, begin to establish themselves within the ecosystem. This increase in biodiversity is a hallmark of later stages of succession. Establishment of pioneer species is the first major phase of primary succession. These species are specially adapted to thrive in harsh and nutrient-poor conditions. Through their growth, they play a significant role in modifying the environment and paving the way for subsequent species. Habitat destruction, on the other hand, does not fit within the phases of primary succession. Instead, it refers to the negative impact of human activities or natural disasters that lead

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://wjecbiology.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE