

Western Governors University (WGU) SCIE1020 C165 Integrated Physical Sciences Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What is described as an area of less dense air that rises and cools, often leading to cloud formation?**
 - A. Cold front**
 - B. High pressure system**
 - C. Low pressure system**
 - D. Warm front**

- 2. What is the term for a tectonic plate boundary where the plates are separating and often feature volcanoes and weak quakes?**
 - A. Transform boundary**
 - B. Convergent boundary**
 - C. Divergent boundary**
 - D. Subduction zone**

- 3. Which part of the Earth's core is the outer half and primarily composed of molten iron?**
 - A. Outer Core**
 - B. Inner Core**
 - C. Crust**
 - D. Asthenosphere**

- 4. Which of the following layers is NOT a part of Earth's atmosphere?**
 - A. Troposphere**
 - B. Stratosphere**
 - C. Asthenosphere**
 - D. Mesosphere**

- 5. What is the lowest layer of Earth's atmosphere, where weather occurs?**
 - A. Stratosphere**
 - B. Troposphere**
 - C. Mesosphere**
 - D. Thermosphere**

6. What are macroscopic properties?

- A. Properties observed at the atomic level**
- B. Properties observed when a few particles interact**
- C. Properties observed when a significant number of particles interact**
- D. Properties that are theoretical**

7. What type of boundary occurs between two seafloor plates that creates volcanic islands and large earthquakes?

- A. Continental to continental boundary**
- B. Oceanic to oceanic boundary**
- C. Subduction zone**
- D. Divergent boundary**

8. What term is used to describe the resistance encountered by an object moving through a fluid?

- A. Static friction**
- B. Kinetic friction**
- C. Fluid resistance**
- D. Net force**

9. What quantity measures the resistance to a change in motion?

- A. Inertia**
- B. Net force**
- C. Mass**
- D. Friction**

10. What term describes the various processes that change rocks from one form to another?

- A. Cycling of minerals**
- B. Rock transformation**
- C. Metamorphic processes**
- D. Precambrian Era**

Answers

SAMPLE

1. C
2. C
3. A
4. C
5. B
6. C
7. B
8. C
9. A
10. D

SAMPLE

Explanations

SAMPLE

1. What is described as an area of less dense air that rises and cools, often leading to cloud formation?

- A. Cold front**
- B. High pressure system**
- C. Low pressure system**
- D. Warm front**

The correct response identifies a low pressure system as an area where less dense air rises and cools, which can lead to cloud formation. In meteorology, low pressure systems are characterized by air that is not as dense as the surrounding air, allowing it to rise. As the air rises, it cools adiabatically. This cooling effect can lead to saturation, where the air reaches its dew point, resulting in the formation of clouds and potentially precipitation. The rising air in a low pressure system is often associated with various weather phenomena, including storms, as the conditions favor the development of clouds and rain. This is in contrast to high pressure systems, which are typically associated with descending air, clearer skies, and stable weather conditions due to the suppression of cloud formation. Understanding the dynamics of low pressure systems is critical for predicting weather patterns, including the potential for storms and precipitation, making it pivotal in the study of atmospheric sciences.

2. What is the term for a tectonic plate boundary where the plates are separating and often feature volcanoes and weak quakes?

- A. Transform boundary**
- B. Convergent boundary**
- C. Divergent boundary**
- D. Subduction zone**

The term that describes a tectonic plate boundary where the plates are separating is "divergent boundary." At divergent boundaries, tectonic plates move apart from each other, which allows magma from the mantle to rise to the surface and create new crust. This process often leads to the formation of volcanic activity, as the molten material escapes through fissures in the Earth's crust. Additionally, the movement of the plates can generate weak earthquakes as stress is released along the separating boundaries. In contrast, transform boundaries involve plates sliding past one another, while convergent boundaries occur when two plates collide, often leading to one plate being forced beneath another, a process associated with intense geological activity, including earthquakes and the generation of mountain ranges. A subduction zone is a specific type of convergent boundary where one plate is pushed down into the mantle, which can also lead to the formation of volcanoes but does not represent the separation of plates that characterizes diverging boundaries.

3. Which part of the Earth's core is the outer half and primarily composed of molten iron?

- A. Outer Core**
- B. Inner Core**
- C. Crust**
- D. Asthenosphere**

The outer core of the Earth is specifically recognized as the layer that lies beneath the mantle and surrounds the inner core. It is predominantly composed of molten iron and is crucial in generating the Earth's magnetic field through the movement of this liquid metal. The molten state of iron in the outer core allows for convection currents, which contribute to the dynamo effect, enabling the generation of the magnetic field. The inner core, in contrast, is solid and composed primarily of iron and nickel due to the immense pressure it experiences, which keeps it in a solid state despite high temperatures. The crust is the outermost layer of the Earth, consisting of solid rock and including both continental and oceanic crust, while the asthenosphere is a semi-fluid layer within the upper mantle that allows for tectonic plate movement. Hence, the outer core is distinguished as the only part that is simultaneously molten and primarily made of iron.

4. Which of the following layers is NOT a part of Earth's atmosphere?

- A. Troposphere**
- B. Stratosphere**
- C. Asthenosphere**
- D. Mesosphere**

The asthenosphere is the correct choice for the layer that is not part of Earth's atmosphere. The asthenosphere is a layer within the Earth's mantle, located beneath the lithosphere, and is composed of semi-molten rock that allows tectonic plates to move. It plays a crucial role in geological processes like plate tectonics and volcanic activity. In contrast, the troposphere, stratosphere, and mesosphere are all layers of Earth's atmosphere. The troposphere is the lowest layer, where weather occurs and where we live. The stratosphere lies above the troposphere and contains the ozone layer, which absorbs and scatters ultraviolet solar radiation. The mesosphere is located above the stratosphere and is characterized by decreasing temperatures with altitude. Each of these atmospheric layers has distinct properties and functions that are essential for life on Earth and the planet's overall climate system.

5. What is the lowest layer of Earth's atmosphere, where weather occurs?

- A. Stratosphere
- B. Troposphere**
- C. Mesosphere
- D. Thermosphere

The lowest layer of Earth's atmosphere, where weather phenomena such as clouds, rain, and storms occur, is the troposphere. This layer extends from the Earth's surface up to about 8 to 15 kilometers (5 to 9 miles) high, depending on geographic location and weather conditions. The troposphere contains most of the atmosphere's mass, including water vapor and aerosols, which are crucial for weather formation. In this layer, temperature generally decreases with altitude, leading to the development of weather systems as warm air rises and interacts with cooler air. This is where processes like convection, condensation, and precipitation take place, making it essential for understanding meteorological phenomena. The other layers mentioned have different characteristics and functions. The stratosphere lies above the troposphere, where temperature increases with altitude due to the presence of the ozone layer, but it is not where weather occurs. The mesosphere is higher still and is characterized by decreasing temperatures and fewer gas molecules. Finally, the thermosphere is the highest layer mentioned, known for its high temperatures and the presence of ions but does not play a role in weather formation. Therefore, the troposphere is indeed the correct answer.

6. What are macroscopic properties?

- A. Properties observed at the atomic level
- B. Properties observed when a few particles interact
- C. Properties observed when a significant number of particles interact**
- D. Properties that are theoretical

Macroscopic properties are defined as characteristics of a material or system that can be measured and observed at a scale that is large enough for them to be representative of the entire system. These properties emerge from the collective behavior of a significant number of particles, such as atoms and molecules, which interact with each other in a way that results in observable phenomena. For example, temperature, pressure, volume, and density are all macroscopic properties that can be measured and are important in the study of thermodynamics and material science. When a large number of particles interact, their individual behaviors average out, leading to stable and predictable properties that can be quantified. This is in contrast to the atomic or molecular level, where behaviors may vary widely among individual particles. Therefore, the essence of macroscopic properties lies in their dependence on the interactions and collective behavior of large quantities of particles, making them significant for practical applications in various scientific fields.

7. What type of boundary occurs between two seafloor plates that creates volcanic islands and large earthquakes?

- A. Continental to continental boundary**
- B. Oceanic to oceanic boundary**
- C. Subduction zone**
- D. Divergent boundary**

The type of boundary that occurs between two seafloor plates, where volcanic islands and large earthquakes are created, is an oceanic to oceanic boundary. At this boundary, one oceanic plate is typically forced under another in a process known as subduction. This subduction can lead to the formation of volcanic arcs, which are chains of volcanic islands that emerge from the ocean floor as a result of melting of the subducted plate. As the subducted plate descends, it creates significant geological stress that can result in large earthquakes along the trench formed at the convergence point of the two oceanic plates. These phenomena are frequently observed in regions such as the Aleutian Islands in Alaska or the Tonga Trench, where these dynamics are in action. This understanding highlights the relationship between plate tectonics and geological features, illustrating how interactions at different types of boundaries lead to distinct geological outcomes, such as volcanic activity and seismic events.

8. What term is used to describe the resistance encountered by an object moving through a fluid?

- A. Static friction**
- B. Kinetic friction**
- C. Fluid resistance**
- D. Net force**

The term used to describe the resistance encountered by an object moving through a fluid is fluid resistance. This concept is specifically related to how fluids, which include liquids and gases, exert a force opposing the motion of an object as it moves through them. Fluid resistance is influenced by factors such as the object's speed, shape, and the viscosity of the fluid. Static friction and kinetic friction refer to the forces that resist motion between solid surfaces, where static friction prevents an object from starting to move and kinetic friction acts on an object already in motion. Net force is a broader term that encompasses all forces acting on an object and does not specifically refer to resistance from fluids. Fluid resistance is a critical concept in understanding dynamics in various fields, including physics and engineering, as it helps in the analysis of movement through air and water.

9. What quantity measures the resistance to a change in motion?

- A. Inertia**
- B. Net force**
- C. Mass**
- D. Friction**

Inertia is defined as the property of an object that resists changes to its state of motion. It is an inherent characteristic of matter that depends on the mass of the object. Essentially, inertia means that an object at rest tends to stay at rest, and an object in motion tends to stay in motion at a constant velocity unless acted upon by an external force. While net force and friction play roles in motion and resistance, they do not directly quantify the object's resistance to changing its motion. Net force refers to the total force acting on an object, determining its acceleration according to Newton's second law, and friction is a force that opposes motion but does not represent the inherent property of inertia itself. Mass is related to inertia, as greater mass indicates greater inertia, but it is not the direct measure of resistance to motion. Thus, inertia is the specific term that encapsulates the idea of resistance to changes in motion.

10. What term describes the various processes that change rocks from one form to another?

- A. Cycling of minerals**
- B. Rock transformation**
- C. Metamorphic processes**
- D. Precambrian Era**

The term that accurately describes the various processes that transform rocks from one form to another is rock transformation. This encompasses all geological processes involved in the formation, alteration, and reformation of rocks, including weathering, erosion, sedimentation, and metamorphism. When considering the other options, "Cycling of minerals" refers to the movement and transformation of minerals within the Earth's crust but does not specifically address the broader context of rock change. "Metamorphic processes" specifically refers to the processes that change existing rocks into metamorphic rocks under heat and pressure, which do not account for other types of rock transformation such as igneous or sedimentary changes. The "Precambrian Era" is a time period in Earth's history and is not relevant to the processes of rock transformation in a geological sense. Understanding the comprehensive term, rock transformation, provides a clearer concept of the geological cycle and the interconnectedness of different rock types and processes involved in their transitions.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://wgu-scie1020-c165.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE