

Western Governors University (WGU) ITEC2114 D337 Internet of Things (IoT) and Infrastructure Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Questions

SAMPLE

- 1. What is a defining characteristic of the 1st wave of IoT?**
 - A. Development of new protocols for data transmission**
 - B. Hardware breakthroughs connecting everyday objects to a network**
 - C. Introduction of advanced machine learning techniques**
 - D. Focus on cybersecurity measures**
- 2. What does ICT (Information and Communication Technology) emphasize in its definition?**
 - A. The role of software development only**
 - B. The integration of telecommunications and computers**
 - C. The necessity of physical storage solutions**
 - D. Cloud computing and its impact on data storage**
- 3. What does URLLC stand for and what is its main application?**
 - A. Ultra-Reliable Low-Latency Communication for remote surgery**
 - B. Ultra-Reliable Low-Latency Communication for cloud computing**
 - C. Unified Resource Low-Latency Communication for smart homes**
 - D. Undisrupted Real-time Low-Latency Communication for game streaming**
- 4. In blockchain technology, what does the term "block" refer to?**
 - A. A temporary storage space for data**
 - B. A permanent record of a single transaction**
 - C. A component that links multiple users together**
 - D. A central database for storing user credentials**
- 5. What is the main focus of the WHO?**
 - A. International trade development**
 - B. Public health**
 - C. Environmental sustainability**
 - D. Economic research**

6. Which ISO standard outlines general requirements for data privacy?

- A. ISO/IEC 27001**
- B. ISO/IEC 27552**
- C. ISO 27005**
- D. ISO/IEC 27002**

7. Return on Investment (ROI) is used to evaluate what aspect of investments?

- A. The security of data**
- B. Market trends**
- C. Efficiency or profitability**
- D. Human user engagement**

8. What functionality does the IoT Runtime Environment (IRE) provide?

- A. Remote management of information flows between applications**
- B. Security features for data transmission**
- C. Control of the physical devices only**
- D. Data storage and offline application management**

9. What type of communication does mMTC enable?

- A. Ad-Hoc Communication**
- B. Massive Machine Type Communication**
- C. Multi-modal Communication**
- D. Machine Learning Communication**

10. What is another term for an Intelligent Energy Device, often abbreviated as IED?

- A. Optical Energy Device**
- B. Internet Energy Device**
- C. Intelligent Electrical Device**
- D. Integrated Energy Device**

Answers

SAMPLE

- 1. B**
- 2. B**
- 3. A**
- 4. B**
- 5. B**
- 6. B**
- 7. C**
- 8. A**
- 9. B**
- 10. C**

SAMPLE

Explanations

SAMPLE

1. What is a defining characteristic of the 1st wave of IoT?

- A. Development of new protocols for data transmission**
- B. Hardware breakthroughs connecting everyday objects to a network**
- C. Introduction of advanced machine learning techniques**
- D. Focus on cybersecurity measures**

The defining characteristic of the 1st wave of IoT is the hardware breakthroughs that connected everyday objects to a network. During this initial phase, significant advancements were made in the development of sensors, microcontrollers, and networking technologies. These innovations enabled physical objects, such as appliances, vehicles, and wearable devices, to connect to the internet and interact with one another, thus forming the foundation of the IoT ecosystem. This focus on hardware was critical because it allowed for the collection and transmission of data from the physical world to digital platforms. As these devices became more prevalent and capable of communication, they opened up new opportunities for automation, data analysis, and enhanced user experiences. The proliferation of these connected devices is what sparked the broader development and integration of IoT solutions into various industries, ultimately leading to the advancements we see today. The emphasis on hardware advancements over software or advanced techniques at this stage is what sets this wave apart from subsequent developments in the field.

2. What does ICT (Information and Communication Technology) emphasize in its definition?

- A. The role of software development only**
- B. The integration of telecommunications and computers**
- C. The necessity of physical storage solutions**
- D. Cloud computing and its impact on data storage**

The definition of ICT, or Information and Communication Technology, places significant emphasis on the integration of telecommunications and computers. This integration reflects the dynamic relationship between various technologies used for communication and data processing. By combining these aspects, ICT facilitates the seamless transfer of information and enhances communication capabilities across different platforms. Understanding this integration is crucial because it underscores how various technologies work together to enable connectivity and communication in the modern world. Telecommunications, which includes technologies for data transmission, such as the internet and mobile networks, combine with computing devices to create a comprehensive framework that supports everything from simple communication to complex data management systems. Focusing solely on software development would neglect the crucial hardware and communication aspects and their interplay within ICT. Similarly, while physical storage solutions and cloud computing are important components of the technology ecosystem, they do not encompass the broader definition of ICT, which emphasizes the interaction and convergence of multiple technologies rather than a single aspect or product.

3. What does URLLC stand for and what is its main application?

- A. Ultra-Reliable Low-Latency Communication for remote surgery**
- B. Ultra-Reliable Low-Latency Communication for cloud computing**
- C. Unified Resource Low-Latency Communication for smart homes**
- D. Undisrupted Real-time Low-Latency Communication for game streaming**

URLLC stands for Ultra-Reliable Low-Latency Communication. Its primary application is in scenarios that demand both high reliability and minimal delay in communication. Remote surgery exemplifies a critical application for URLLC because it requires real-time data transmission without interruptions or delays. This ensures that surgeons can perform procedures over a distance with immediate responsiveness, which is vital for patient safety and successful outcomes. The other applications mentioned, such as cloud computing, smart homes, and game streaming, may benefit from low latency, but they do not typically require the same level of ultra-reliability as remote surgery. In these cases, while low latency is important, the stakes may not be as high since delays or reliability issues don't usually impact human life or critical tasks in the same manner. This emphasis on reliability and minimal latency is what distinctly fosters the relevance of URLLC in fields like telemedicine and automated driving, where performance can have significant real-world consequences.

4. In blockchain technology, what does the term "block" refer to?

- A. A temporary storage space for data**
- B. A permanent record of a single transaction**
- C. A component that links multiple users together**
- D. A central database for storing user credentials**

The term "block" in blockchain technology specifically refers to a permanent record of a single transaction or a group of transactions that have been validated and are ready to be added to the blockchain. Each block contains a set of transactions, along with a unique identifier called a hash, which ties it to the previous block, forming a chain. This structure ensures that once a block is added to the blockchain, the information it contains cannot be easily altered or deleted, providing a high level of security and integrity to the data. The significance of this concept is rooted in the decentralized nature of blockchain technology, which allows it to function without a central authority. By having blocks that are immutable and securely linked, the system maintains a transparent and trustworthy record of transactions among all participants in the network. In contrast, the other options describe concepts that do not accurately capture the essence of a block within blockchain technology. Temporary storage space does not reflect the permanence of the data in a block, and a component that links users together describes more about network structure than about the block itself. Lastly, a central database contradicts the decentralized model that defines blockchain, where no single entity controls all the data.

5. What is the main focus of the WHO?

- A. International trade development
- B. Public health**
- C. Environmental sustainability
- D. Economic research

The World Health Organization (WHO) is primarily dedicated to public health on a global scale. Established in 1948, its core mission is to promote health, keep the world safe, and serve vulnerable populations. The organization focuses on improving health care systems, combating diseases, and addressing health disparities among different countries and communities. The WHO sets health standards, provides guidelines, and coordinates international health initiatives to tackle urgent health issues, such as epidemics or pandemics, thus reinforcing its role in public health globally. While aspects such as international trade, environmental sustainability, and economic research may intersect with public health, they are not the central focus of the WHO. The organization's efforts are predominantly aimed at enhancing health outcomes and ensuring access to essential health services for all individuals, making public health its primary area of concern.

6. Which ISO standard outlines general requirements for data privacy?

- A. ISO/IEC 27001
- B. ISO/IEC 27552**
- C. ISO 27005
- D. ISO/IEC 27002

The correct choice is ISO/IEC 27552, which specifically addresses data privacy. This standard is designed to provide guidance and requirements for organizations to manage personal data and ensure the privacy of individuals. It focuses on creating a framework for effective data privacy management, helping organizations comply with various data protection regulations and implement best practices to safeguard personal information. ISO/IEC 27001, while important, relates to information security management systems but does not specifically focus on data privacy as its primary concern. ISO 27005 deals with information security risk management, providing guidelines for establishing a risk management process within the context of information security. Lastly, ISO/IEC 27002 provides a code of practice for information security controls but is not specifically tailored to data privacy like ISO/IEC 27552. Therefore, ISO/IEC 27552 is narrowly focused on the requirements necessary for effectively managing data privacy, making it the correct choice.

7. Return on Investment (ROI) is used to evaluate what aspect of investments?

- A. The security of data**
- B. Market trends**
- C. Efficiency or profitability**
- D. Human user engagement**

Return on Investment (ROI) is a financial metric that is widely used to assess the efficiency or profitability of an investment. It measures the gain or loss generated relative to the amount of money invested. By calculating ROI, investors can determine how well an investment is performing and compare it to other investment opportunities or benchmarks. ROI is expressed as a percentage, allowing for straightforward comparisons. A higher ROI indicates a more profitable investment, while a lower or negative ROI suggests a loss. This metric is particularly useful for businesses and individuals when deciding where to allocate resources or whether to continue, expand, or divest from certain projects or assets. In this context, while aspects such as data security, market trends, and human user engagement may play significant roles in the overall investment strategy, they do not directly evaluate the financial return generated from those investments, making them less relevant when specifically assessing ROI. Understanding ROI's focus on efficiency and profitability is essential for making informed financial decisions.

8. What functionality does the IoT Runtime Environment (IRE) provide?

- A. Remote management of information flows between applications**
- B. Security features for data transmission**
- C. Control of the physical devices only**
- D. Data storage and offline application management**

The IoT Runtime Environment (IRE) is designed to facilitate the smooth operation of Internet of Things (IoT) applications by enabling remote management of various information flows between applications. This entails overseeing how data is sent, received, and processed across different systems and devices, which is essential for the effective functioning of IoT ecosystems. By allowing for real-time control and updates to the data exchange processes, the IRE ensures that applications can operate seamlessly, adapting to changes in data flow as required. In particular, this functionality is critical as IoT devices often need to communicate with multiple other devices and servers, managing data transitions to reflect real-time changes and respond to external inputs. Such capabilities ensure that the system remains responsive and efficient in handling the vast amounts of data generated by IoT devices.

9. What type of communication does mMTC enable?

- A. Ad-Hoc Communication
- B. Massive Machine Type Communication**
- C. Multi-modal Communication
- D. Machine Learning Communication

Massive Machine Type Communication, commonly referred to as mMTC, is a fundamental aspect of the Internet of Things (IoT) framework. This type of communication is designed to support a vast number of devices that communicate with each other or with central systems, primarily in scenarios where efficient, low-power, and cost-effective connectivity is essential. mMTC enables the connection of a large number of devices, often in the thousands or millions, within a relatively small geographical area. This capability is crucial for applications such as smart cities, industrial IoT, and sensor networks, where numerous sensors and actuators must transmit small amounts of data frequently yet reliably. The primary goals of mMTC are to maintain a high level of connectivity while ensuring low energy consumption and extended battery life for devices, which is critical in various applications where device maintenance is challenging. In contrast, other types of communication options, while they may relate to machine interaction, do not specifically address the unique requirements and characteristics of mMTC. Thus, the definition of mMTC makes it clear why this is the correct choice as it aligns with the objectives and functionalities aimed at massive interconnections between machines in an efficient manner.

10. What is another term for an Intelligent Energy Device, often abbreviated as IED?

- A. Optical Energy Device
- B. Internet Energy Device
- C. Intelligent Electrical Device**
- D. Integrated Energy Device

Intelligent Energy Device is commonly synonymous with the term Intelligent Electrical Device. This reflects the functionality and purpose of such devices, which are designed to manage, monitor, and control electrical energy systems intelligently. These devices play a crucial role in modern energy management systems, enabling enhanced efficiency, automated control, and real-time data analysis. In contrast, the other terms presented do not accurately convey the specific role or function associated with Intelligent Energy Devices. For example, "Optical Energy Device" relates to devices that deal with light rather than electrical energy, while "Internet Energy Device" could imply a connection to IoT but does not encompass the broader electrical context. "Integrated Energy Device" may suggest a merging of energy sources or types but lacks the direct reference to intelligent systems found in Intelligent Electrical Device.