

Water Treatment Class E Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What happens to alkalinity and pH when coagulants consume alkalinity?**
 - A. Alkalinity increases, pH increases**
 - B. Alkalinity decreases, pH drops**
 - C. Alkalinity remains constant, pH decreases**
 - D. Alkalinity increases, pH remains constant**
- 2. What is a Treatment Technique violation related to the TCR?**
 - A. Using outdated monitoring technologies**
 - B. Failure to conduct required assessments within a specified time**
 - C. Not identifying the source of contamination**
 - D. Exceeding acceptable levels of chlorine**
- 3. What is the purpose of mixing speed in the coagulation process?**
 - A. To enhance chemical reactions**
 - B. To maintain a consistent temperature**
 - C. To increase water temperature**
 - D. To allow for sedimentation**
- 4. Which of the following is classified as a reciprocating pump?**
 - A. Vertical turbine pump**
 - B. Piston or plunger pump**
 - C. Centrifugal pump**
 - D. Horizontal split-case pump**
- 5. Which of the following is NOT a process in a conventional surface water treatment plant?**
 - A. Coagulation**
 - B. Filtration**
 - C. Flocculation**
 - D. Desalination**

6. Define a Public Water System (PWS).

- A. A system that provides water for industrial use**
- B. A system that supplies water to more than 1000 residents**
- C. A system that provides water for human consumption with at least fifteen service connections or serves an average of twenty-five individuals daily**
- D. A system limited to providing water only in emergencies**

7. How can alkalinity be increased in water treatment?

- A. By decreasing water temperature**
- B. Through the addition of caustic soda, soda ash, or lime**
- C. By filtering water through sand**
- D. With the introduction of alum or ferric salts**

8. How is specific capacity calculated for a well?

- A. Well Yield/Drawdown (in gpm/ft)**
- B. Drawdown/Well Yield (in gpm/ft)**
- C. Well Depth/Drawdown (in gpm/ft)**
- D. Flow Rate/Water Volume (in gpm/ft)**

9. When should a filter be backwashed?

- A. When the influent NTU decreases**
- B. When the influent pH changes**
- C. When temperature increases**
- D. When head loss across the filter reaches a predetermined limit**

10. What is the volume required for a Total Coliform sample?

- A. 50 mL**
- B. 100 mL**
- C. 250 mL**
- D. 500 mL**

Answers

SAMPLE

1. B
2. B
3. A
4. B
5. D
6. C
7. B
8. A
9. D
10. B

SAMPLE

Explanations

SAMPLE

1. What happens to alkalinity and pH when coagulants consume alkalinity?

- A. Alkalinity increases, pH increases
- B. Alkalinity decreases, pH drops**
- C. Alkalinity remains constant, pH decreases
- D. Alkalinity increases, pH remains constant

When coagulants are added to water, they often react with alkalinity in the water, which primarily consists of bicarbonate and carbonate ions. This reaction typically involves the neutralization of these alkalinity compounds, leading to a decrease in the concentration of these ions, and consequently, a decrease in alkalinity. As coagulants consume alkalinity, the balance of hydrogen ions in the water shifts, which tends to lead to a reduction in pH. A lower pH indicates more acidity in the water. This chain of events—where coagulants react with alkalinity, leading to a decrease in its levels and subsequently causing pH to drop—accurately describes the relationship between alkalinity and pH during the coagulation process. Understanding this process is essential in water treatment because maintaining the optimal pH and alkalinity levels is crucial for effective coagulation and overall water quality management.

2. What is a Treatment Technique violation related to the TCR?

- A. Using outdated monitoring technologies
- B. Failure to conduct required assessments within a specified time**
- C. Not identifying the source of contamination
- D. Exceeding acceptable levels of chlorine

A Treatment Technique violation related to the Total Coliform Rule (TCR) specifically involves failing to conduct required assessments within a specified timeframe. The TCR establishes standards for monitoring the presence of coliform bacteria in drinking water, which are indicators of potential contamination. When a water system does not complete the necessary assessments, whether it's routine sampling or follow-up testing after a detection of coliform presence, it compromises the safety and quality of the water supply. Timely assessments are vital for ensuring that any contamination is identified and addressed quickly, thus protecting public health. The other options, while relating to water treatment and safety, do not capture the specific nature of what constitutes a Treatment Technique violation as defined by the TCR. Using outdated monitoring technologies and failing to identify sources of contamination are important issues, but they do not fit within the specific framework that defines a treatment technique violation. Exceeding acceptable levels of chlorine generally pertains to Maximum Contaminant Level (MCL) violations rather than treatment technique violations, which focus more on operational processes and methodologies rather than specific contaminant concentrations.

3. What is the purpose of mixing speed in the coagulation process?

- A. To enhance chemical reactions**
- B. To maintain a consistent temperature**
- C. To increase water temperature**
- D. To allow for sedimentation**

The purpose of mixing speed in the coagulation process is primarily to enhance chemical reactions. During coagulation, chemical coagulants are added to the water to destabilize colloidal particles and encourage them to aggregate into larger flocs. The speed at which the water is mixed is crucial because it affects how well the coagulants are dispersed and how effectively they interact with the particles in the water. By optimizing the mixing speed, operators can ensure that the coagulants are uniformly distributed throughout the water, which promotes more efficient contact between the coagulants and the suspended particles. This enhanced interaction increases the rate of floc formation, improving the overall effectiveness of the coagulation process and leading to better removal of impurities during subsequent stages of water treatment. The other options provided do not accurately represent the primary role of mixing speed in this context; for example, while maintaining a consistent temperature may be important in other processes, it is not a direct purpose of mixing speed during coagulation. Similarly, increasing water temperature is not a goal achieved through varying mixing speed, and allowing sedimentation refers to a different phase of the treatment process where the flocs settle out of the water after coagulation, rather than during the mixing stage itself.

4. Which of the following is classified as a reciprocating pump?

- A. Vertical turbine pump**
- B. Piston or plunger pump**
- C. Centrifugal pump**
- D. Horizontal split-case pump**

A piston or plunger pump is classified as a reciprocating pump because it uses a back-and-forth motion to move fluid. In this type of pump, a piston or plunger is driven within a cylinder, creating pressure by displacing a specific volume of fluid with each stroke. This mechanism allows for the controlled transfer of liquids, particularly under high pressure, making it ideal for various applications in water treatment processes where consistent flow rates are necessary. Reciprocating pumps are known for their ability to handle varying fluid characteristics, including those that may be viscous or contain solids, which enhances their versatility in water treatment. The operation of the piston's movement—either pulling the fluid into the chamber on the suction stroke and then pushing it out during the discharge stroke—creates a positive displacement effect, further distinguishing them from other pump types that rely on kinetic energy to move fluid. Hence, the classification of piston or plunger pumps as reciprocating pumps highlights their unique method of operation compared to centrifugal and other types of pumps that function through different principles.

5. Which of the following is NOT a process in a conventional surface water treatment plant?

- A. Coagulation**
- B. Filtration**
- C. Flocculation**
- D. Desalination**

In a conventional surface water treatment plant, the primary processes include coagulation, flocculation, and filtration, which are designed to remove suspended particles and pathogens from the water. These processes work in conjunction to improve water quality for safe distribution and consumption. Coagulation involves adding chemicals to the water that bind with impurities, causing them to cluster together into larger particles. Flocculation follows, where gentle mixing encourages these larger clumps, known as flocs, to form and settle. Then, filtration is employed to remove the remaining flocs and other contaminants, resulting in clearer and cleaner water. Desalination, on the other hand, is a distinct process specifically aimed at removing salts and minerals from seawater or brackish water to produce freshwater. This method is not part of conventional surface water treatment, which typically deals with freshwater sources rather than saline environments. Thus, while desalination is an important water treatment technique in areas facing freshwater shortages, it does not fit within the standard processes of a conventional surface water treatment plant.

6. Define a Public Water System (PWS).

- A. A system that provides water for industrial use**
- B. A system that supplies water to more than 1000 residents**
- C. A system that provides water for human consumption with at least fifteen service connections or serves an average of twenty-five individuals daily**
- D. A system limited to providing water only in emergencies**

A Public Water System (PWS) is defined as a system that provides water for human consumption and meets specific criteria regarding the number of service connections or the population served. The correct answer states that a PWS must have at least fifteen service connections or serve an average of twenty-five individuals daily. This definition is significant because it establishes a baseline for the scale of water supply involved, ensuring that adequate safety and health standards are applied for systems that cater to both small and large populations. This definition is rooted in public health regulations that govern water quality and access, reflecting the importance of consistent and safe water supply for communities. By identifying systems based on their connections and populations, regulatory frameworks can effectively monitor and ensure compliance with safety guidelines, thus protecting public health. In contrast, the other options provide definitions that do not meet the established criteria for a PWS. Systems solely for industrial use don't represent the public health focus relevant to community water supplies. Systems that supply water to more than 1,000 residents may exceed the minimum requirements but do not encompass smaller systems that are also classified as PWS. Finally, emergency water supply systems are limited in scope and do not operate under the same regulatory framework aimed at ongoing, routine water delivery for human consumption.

7. How can alkalinity be increased in water treatment?

- A. By decreasing water temperature
- B. Through the addition of caustic soda, soda ash, or lime**
- C. By filtering water through sand
- D. With the introduction of alum or ferric salts

Increasing alkalinity in water treatment is primarily achieved through the addition of compounds that can provide hydroxide ions (OH^-) or bicarbonate/carbonate ions ($\text{HCO}_3^-/\text{CO}_3^{2-}$). The correct approach involves using substances such as caustic soda (sodium hydroxide), soda ash (sodium carbonate), or lime (calcium hydroxide). Each of these substances contributes to the chemical composition of the water by raising the pH and supplying alkaline ions, which effectively increases the alkalinity. Caustic soda adds hydroxide ions directly, which elevates the water's alkalinity and pH. Soda ash can increase both alkalinity and pH by supplying carbonate ions. Lime, when dissolved, increases alkalinity by generating hydroxide ions through its dissociation in water. In contrast, the other choices do not correctly address the method of increasing alkalinity. Decreasing water temperature is unrelated to alkalinity adjustments; it typically has an effect on solubility and reaction rates but does not add alkaline substances. Filtering through sand mainly serves to remove particulates rather than alter chemical properties like alkalinity. The introduction of alum or ferric salts is generally aimed at coagulation and flocculation processes, which can lower pH.

8. How is specific capacity calculated for a well?

- A. Well Yield/Drawdown (in gpm/ft)**
- B. Drawdown/Well Yield (in gpm/ft)
- C. Well Depth/Drawdown (in gpm/ft)
- D. Flow Rate/Water Volume (in gpm/ft)

Specific capacity is a measure of a well's efficiency and productivity, indicating how much water can be extracted from the well per unit of drawdown. It is calculated by taking the well yield, which is the amount of water produced from the well over a specific time period, and dividing it by the drawdown, which is the difference in water level in the well before and during pumping. The formula for specific capacity is thus expressed as well yield divided by drawdown, which yields a result in gallons per minute per foot (gpm/ft). This metric helps in assessing the performance of a well and can be used for comparative analysis with other wells. In this case, since we know that specific capacity is defined as the well yield divided by the drawdown, the correct answer aligns perfectly with this definition. The other options involve incorrect arrangements of the terms, which do not accurately correspond to the established formula for calculating specific capacity.

9. When should a filter be backwashed?

- A. When the influent NTU decreases
- B. When the influent pH changes
- C. When temperature increases
- D. When head loss across the filter reaches a predetermined limit**

A filter should be backwashed when head loss across the filter reaches a predetermined limit because this indicates that the filter media is becoming clogged with particulates and debris. As water flows through the filter, particles are trapped, leading to an increase in resistance to flow, which is measured as head loss. When head loss reaches a specific threshold, backwashing is necessary to reverse the flow and dislodge the accumulated materials, effectively cleaning the filter and restoring optimal flow rates. This process not only helps maintain the filter's efficiency but also ensures that the water quality remains high, as clogged filters can lead to reduced filtration performance and potential contamination of the treated water. Regular monitoring and backwashing based on head loss help maintain the longevity and effectiveness of the filtration system.

10. What is the volume required for a Total Coliform sample?

- A. 50 mL
- B. 100 mL**
- C. 250 mL
- D. 500 mL

The volume required for a Total Coliform sample is 100 mL. This standard volume is established to ensure accurate and reliable testing results. Sampling at this volume allows for an effective evaluation of the water quality and the presence of coliform bacteria, as it provides sufficient material for multiple tests and complies with regulatory protocols set by organizations such as the Environmental Protection Agency (EPA). Analyzing a 100 mL sample strikes a balance between providing enough water for the necessary laboratory analysis while also ensuring that the testing is manageable and cost-effective for facilities engaged in water treatment monitoring. Using too small a volume could lead to an insufficient representation of the water's quality, while larger volumes may not be practical for field sampling or testing purposes.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://watertreatmentclasse.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE