

Water and Fuel Systems Maintenance (WFSM) Set B Volume 4 Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. How can cross-contamination be eliminated with the water distribution truck?**
 - A. Paint the truck key red or blue**
 - B. Clearly mark the trucks potable and non-potable**
 - C. Ensure the AF Form 1800 states the type of water required**
 - D. Provide operating instructions for each truck's water type**
- 2. Which subsystem is identified as the primary potable water distribution system in the BEAR setup?**
 - A. 550 initial system**
 - B. source run subsystem**
 - C. 550 follow on subsystem**
 - D. industrial operations and flight line extension subsystem**
- 3. What chemical is fed to reduce corrosion inside the pipe network of the ROWPU?**
 - A. Polymer**
 - B. Chlorine**
 - C. Citric acid**
 - D. Sodium hex**
- 4. How many hours per day is the ROWPU designed to operate?**
 - A. 24**
 - B. 20**
 - C. 12**
 - D. 8**
- 5. Name one common type of corrosion found in water systems.**
 - A. Cavitation corrosion**
 - B. Galvanic corrosion**
 - C. Stress corrosion**
 - D. Uniform corrosion**

6. What type of valve is most commonly used in water distribution systems?

- A. Ball valve**
- B. Butterfly valve**
- C. Gate valve**
- D. Check valve**

7. What color stripe is used to identify hoses for the potable water subsystem?

- A. Blue**
- B. Green**
- C. White**
- D. Yellow**

8. After how many washes should you discard a bag filter?

- A. 4**
- B. 6**
- C. 8**
- D. 10**

9. How many washers and dryers are provided with the self-help laundry?

- A. Three washers and three double stacked dryers**
- B. Four washers and four double stacked dryers**
- C. Five washers and five double stacked dryers**
- D. Six washers and six double stacked dryers**

10. What is the normal reading of RO pressure for brackish water?

- A. 5 psi**
- B. 50 psi**
- C. 500 psi**
- D. 5000 psi**

Answers

SAMPLE

1. B
2. A
3. D
4. B
5. B
6. C
7. C
8. B
9. C
10. C

SAMPLE

Explanations

SAMPLE

1. How can cross-contamination be eliminated with the water distribution truck?

- A. Paint the truck key red or blue**
- B. Clearly mark the trucks potable and non-potable**
- C. Ensure the AF Form 1800 states the type of water required**
- D. Provide operating instructions for each truck's water type**

Clearly marking the trucks as either potable or non-potable directly addresses the issue of cross-contamination in the water distribution system. By using distinct labels or colors to differentiate the types of water being transported, personnel are visually reminded of the specific usage of each truck. This serves as a critical safety measure to prevent accidental mixing of potable and non-potable water, which could have serious health implications. The proper labeling enables operators and anyone involved in the handling of the trucks to quickly identify which vehicle is suited for drinking water and which is for other purposes. This awareness is essential in maintaining the integrity of the water distributed and ensures compliance with health regulations and safety standards. While other options may contribute to operational safety or provide helpful information, labeling the trucks is the most direct and effective method for preventing cross-contamination.

2. Which subsystem is identified as the primary potable water distribution system in the BEAR setup?

- A. 550 initial system**
- B. source run subsystem**
- C. 550 follow on subsystem**
- D. industrial operations and flight line extension subsystem**

The 550 initial system is identified as the primary potable water distribution system in the BEAR setup due to its dedicated functionality in ensuring that clean and safe drinking water is readily available. This system is designed to handle the initial phase of water distribution and management in a base environment, making sure that the essential needs for potable water are met right from the start of operations. In the context of the BEAR setup, which refers to the Battalion Expeditionary Assembly and Repair, having a reliable primary distribution system is vital for supporting personnel and operations in deployed environments. The 550 initial system is structured to provide the necessary infrastructure to manage water quality, supply, and distribution systems effectively, which is critical for sustaining troops in the field. The other subsystems, while essential for different aspects of water management and distribution, do not serve as the primary potable water distribution system in the BEAR setup. They may support or extend capabilities but primarily focus on other operational needs rather than being the main source for potable water.

3. What chemical is fed to reduce corrosion inside the pipe network of the ROWPU?

- A. Polymer**
- B. Chlorine**
- C. Citric acid**
- D. Sodium hex**

Sodium hexametaphosphate, often referred to in its abbreviated form as sodium hex, is specifically used in water treatment processes to reduce corrosion and scale formation within piping systems, such as those found in Reverse Osmosis Water Purification Units (ROWPU). This chemical works by modifying the chemical characteristics of water, creating a more stable environment that helps to inhibit the corrosion of metals in the pipework. Sodium hex functions by binding with metal ions and reducing their solubility while forming protective layers on the interior surfaces of pipes. This protective action minimizes the electrochemical reactions that lead to corrosion, thereby extending the lifespan of the infrastructure and ensuring that the treated water remains safe and free from contaminants that could be introduced by corroding metals. In contrast, while polymers and chlorine have their uses in water treatment, they do not specifically target corrosion mitigation in the same effective manner as sodium hex. Citric acid is often used to clean equipment and can help in descaling, but it is not primarily aimed at preventing corrosion within pipe networks. Thus, sodium hex is recognized as the best option for maintaining the integrity of a ROWPU's piping system against corrosion.

4. How many hours per day is the ROWPU designed to operate?

- A. 24**
- B. 20**
- C. 12**
- D. 8**

The Reverse Osmosis Water Purification Unit (ROWPU) is specifically designed to operate efficiently for up to 20 hours per day. This design capacity allows the unit to provide a consistent supply of purified water, supporting various operational needs in both military and disaster response scenarios. The 20-hour operational design strikes a balance between maximizing output and ensuring maintenance can be performed without disrupting the supply of water. Operating for this amount of time enables continuous water production while still considering the need for periodic checks and maintenance, which is necessary to keep the system functioning at optimal levels. This configuration is tailored to meet the demands of environments where access to clean water is critical, thus emphasizing reliability and efficiency in water purification operations.

5. Name one common type of corrosion found in water systems.

- A. Cavitation corrosion**
- B. Galvanic corrosion**
- C. Stress corrosion**
- D. Uniform corrosion**

The most common type of corrosion found in water systems is galvanic corrosion. This type occurs when two dissimilar metals are electrically connected in the presence of an electrolyte, such as water. In this scenario, one metal becomes the anode and corrodes faster than it would on its own, while the other metal acts as the cathode and is protected from corrosion. Galvanic corrosion is particularly relevant in water systems because they often contain various metal components, such as pipes, valves, and fittings, which may be made from different materials. The presence of water as an electrolyte facilitates the electrochemical reactions necessary for galvanic corrosion to occur. Awareness of this type of corrosion is essential for maintenance and prevention strategies in water systems to ensure their longevity and operational safety.

6. What type of valve is most commonly used in water distribution systems?

- A. Ball valve**
- B. Butterfly valve**
- C. Gate valve**
- D. Check valve**

The gate valve is most commonly used in water distribution systems due to its design, which allows for minimal resistance to flow when fully opened. This feature makes gate valves particularly suitable for applications where the flow rate needs to be maximized, such as in water supply lines. They provide a tight seal, reducing leakage when closed, and are designed primarily for on/off service rather than throttling, which is an important consideration in systems where flow control is necessary. In water distribution systems, the ability to isolate sections of the piping for maintenance or repairs is crucial, and gate valves excel in this area because they can be operated with a simple turn of the wheel or handle. This functionality, combined with their durability and ability to withstand high pressure, makes gate valves a preferred choice among engineers and system designers for managing large volumes of water efficiently.

7. What color stripe is used to identify hoses for the potable water subsystem?

- A. Blue**
- B. Green**
- C. White**
- D. Yellow**

The identification of hoses for the potable water subsystem is crucial for ensuring safety and preventing contamination. The correct choice, which is a white stripe, serves as a universal marking to visually indicate that the hose is designated for potable water. This color coding helps differentiate potable water hoses from those used for non-potable applications, thereby minimizing the risk of cross-contamination and ensuring compliance with health and safety regulations. Other colors, such as blue or green, might be used for other systems or purposes, such as indicating other types of water or liquids which are not intended for drinking. Yellow could be reserved for hazardous materials or warning markings, leading to further confusion if used for potable water. Therefore, the white stripe is effectively used to convey the specific function of the hose in the potable water subsystem.

8. After how many washes should you discard a bag filter?

- A. 4**
- B. 6**
- C. 8**
- D. 10**

In filtration systems, bag filters are designed to capture and hold particulate matter from liquids like fuel or water. The effectiveness of a bag filter decreases with each wash or use, as the pores can become clogged with contaminants, reducing its flow rate and filtration efficiency. The typical guideline for discarding a bag filter is after a certain number of washes. Option B indicates that a bag filter should be discarded after 6 washes. This number reflects a balance between maintaining effective filtration and avoiding potential failures that could arise from excessive use. Each wash can lead to wear and degradation of the filter material, ultimately compromising its integrity. Discarding the filter after this recommended number of washes helps ensure that filtration remains effective and system performance remains optimal, preventing issues such as ruptures or bypass. Other choices suggest higher numbers of washes, which would potentially lead to using filters beyond their capacity, risking contamination of the system. Adhering to the guideline of 6 washes allows for reliable operation and protects the overall integrity of water and fuel systems.

9. How many washers and dryers are provided with the self-help laundry?

- A. Three washers and three double stacked dryers**
- B. Four washers and four double stacked dryers**
- C. Five washers and five double stacked dryers**
- D. Six washers and six double stacked dryers**

The self-help laundry typically provides five washers and five double-stacked dryers. This configuration is designed to accommodate a reasonable volume of laundry needs for users, providing enough capacity without overwhelming the space or resources. Five machines allow for efficient operation while enabling multiple users to do their laundry simultaneously. The double-stacked design for the dryers optimizes the available space, making it a practical solution for locations where space may be limited. The choice of five washers and dryers strikes a balance between usability and capacity, ensuring that users have access to adequate laundry facilities without causing significant delays or bottlenecks during peak usage times. This setup enhances the user experience by allowing more individuals to have access to laundry services when they need them.

10. What is the normal reading of RO pressure for brackish water?

- A. 5 psi**
- B. 50 psi**
- C. 500 psi**
- D. 5000 psi**

The normal reading of reverse osmosis (RO) pressure for brackish water is typically around 500 psi. This level of pressure is necessary to overcome the osmotic pressure of the brackish water, allowing for effective filtration and separation of contaminants. Brackish water generally has a higher salinity than freshwater, requiring more force to drive the water through the RO membranes. Higher pressure levels, such as those reflected in the answer, enable the system to maintain the balance needed for optimal performance, ensuring that more purified water is produced while minimizing energy waste. Operating the system within this pressure range enhances efficiency and prolongs the life of the RO membranes. The other options represent pressure levels that do not align with the operational requirements for brackish water processing, as they are either too low or too high for effective RO function.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://wfsmsetbvol4.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE