

Water and Fuel Systems Maintenance (WFSM) Set B Volume 2 Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What should the vacuum reading be on a normal self-contained dispenser pump installation?**
 - A. 6-8 inches**
 - B. 4-6 inches**
 - C. 2-4 inches**
 - D. 1-2 inches**
- 2. How many days in advance must you request permission before entering a fuel tank?**
 - A. 10 days**
 - B. 15 days**
 - C. 10 workdays**
 - D. 15 workdays**
- 3. Where is the control tubing rerouted when the water drain valve is removed from the filter separator?**
 - A. Nowhere; it is plugged off**
 - B. Upstream of the fuel discharge valve**
 - C. Downstream of the FDV**
 - D. To the cover chamber of the FDV**
- 4. Tank truck unloading headers will be spaced about how many feet apart?**
 - A. 40**
 - B. 60**
 - C. 80**
 - D. 100**
- 5. What additional equipment is recommended for safe handling of fuel vapors during fuel delivery?**
 - A. Gas mask**
 - B. Fire extinguisher**
 - C. Fume hood**
 - D. Vapor recovery system**

6. In water systems, what is the main purpose of a filtration system?

- A. To increase pressure**
- B. To remove impurities**
- C. To heat the water**
- D. To add chemicals**

7. When removing the KMU-416/F modification kit with 9 additional elements, how many elements must be removed from the front side to balance the manifold?

- A. 3**
- B. 6**
- C. 9**
- D. 15**

8. What minimum acceptable pressure reading at the hydraulic valve would rule out register creeping?

- A. 10 psi**
- B. 15 psi**
- C. 20 psi**
- D. 25 psi**

9. When cleaning a tank without dikes, how far must an air compressor be positioned upwind?

- A. At least 20 feet from the manhole**
- B. At least 50 feet from the tank**
- C. Just inside the dike**
- D. Just outside the dike**

10. What is the normal flow direction of fuel through a strainer?

- A. Outside to center**
- B. Center to outside**
- C. Outside to center to outside**
- D. Center to outside to center**

Answers

SAMPLE

1. B
2. D
3. A
4. B
5. D
6. B
7. B
8. D
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What should the vacuum reading be on a normal self-contained dispenser pump installation?

- A. 6-8 inches**
- B. 4-6 inches**
- C. 2-4 inches**
- D. 1-2 inches**

In a normal self-contained dispenser pump installation, a vacuum reading of 4-6 inches indicates optimal performance for the system. This range signifies that the system is effectively creating the necessary suction to draw fuel from the tank through the lines and into the dispenser without excessive resistance or leaks. Maintaining a vacuum within this range ensures that the dispenser operates efficiently, minimizing the risk of cavitation, which can occur if the vacuum is too low, or excessive wear on the pump components due to additional effort required to maintain proper flow at a lower vacuum level. The other ranges provided do not align with the expected operational parameters for such systems; readings outside of this standard range could indicate issues in the system such as blockages, leaks, or wear in the pump equipment, which can ultimately affect fuel delivery and operational reliability. Thus, adherence to the specified vacuum range is critical for ensuring that the dispenser functions as intended and provides proper service without unnecessary complications.

2. How many days in advance must you request permission before entering a fuel tank?

- A. 10 days**
- B. 15 days**
- C. 10 workdays**
- D. 15 workdays**

The requirement to request permission 15 workdays in advance before entering a fuel tank is in place to ensure adequate safety and operational planning. This period allows for necessary inspections, coordination of resources, and address any potential hazards that may be associated with the entry into the fuel tank. Planning for such activities is critical in maintaining compliance with safety regulations and ensuring that the appropriate personnel are available, along with any required safety equipment being in place. Additionally, this timeframe ensures that risk assessments can be conducted, and any environmental considerations are taken into account, which is essential in fuel tank maintenance operations to prevent accidents and ensure safety for all personnel involved. Using workdays instead of calendar days reflects a focus on operational efficiency, acknowledging that weekends and holidays may not be suitable for planning such activities. This distinction reinforces the importance of thorough preparation and adherence to safety protocols in these potentially hazardous environments.

3. Where is the control tubing rerouted when the water drain valve is removed from the filter separator?

- A. Nowhere; it is plugged off**
- B. Upstream of the fuel discharge valve**
- C. Downstream of the FDV**
- D. To the cover chamber of the FDV**

The correct answer indicates that when the water drain valve is removed from the filter separator, the control tubing is plugged off. This approach is taken to ensure that the system remains sealed and operational without allowing unfiltered or untreated water into the fuel system after the drain valve's removal. Plugging off the control tubing minimizes the risk of contamination and maintains the integrity of the fuel system. If the control tubing were left open or rerouted to another part of the system, it could lead to potential issues such as fuel contamination or operational glitches in the filtration process. By choosing to plug it off, the design ensures safety and efficiency, keeping the separation process intact without compromising the system. In contrast, rerouting the tubing to different locations in the system could introduce points of failure or contamination, which would be undesirable in maintenance practices. Therefore, the choice to plug the tubing off aligns with sound maintenance principles, safeguarding the water and fuel system's functionality.

4. Tank truck unloading headers will be spaced about how many feet apart?

- A. 40**
- B. 60**
- C. 80**
- D. 100**

The correct choice regarding the spacing of tank truck unloading headers is based on standard practices for ensuring safety and operational efficiency. Spacing the unloading headers approximately 60 feet apart is designed to minimize the risk of spills or cross-contamination between different types of fuel or other liquids being unloaded. This specific spacing allows for adequate maneuverability of the tank trucks during the unloading process, providing enough distance for workers to operate safely without being in close proximity to potential hazards. Such spacing is considered effective in preventing accidental mixing of incompatible materials during transfers, which is critical in both ensuring safety and preserving the quality of the substances being handled. In contrast, spacing options that are significantly greater or lesser, such as 40, 80, or 100 feet, may not align with industry best practices in fuel handling safety, effectiveness of operations, or local regulations regarding the placement of such equipment.

5. What additional equipment is recommended for safe handling of fuel vapors during fuel delivery?

- A. Gas mask**
- B. Fire extinguisher**
- C. Fume hood**
- D. Vapor recovery system**

A vapor recovery system is specifically designed to capture and recover fuel vapors that are released during fuel transfer operations, which is critical for both environmental protection and safety. This system prevents harmful vapors from being released into the atmosphere, reducing the risk of inhalation by personnel as well as minimizing environmental contamination. Implementing a vapor recovery system ensures that the potentially hazardous vapors do not accumulate in the delivery area, thereby enhancing air quality and improving overall safety during fuel handling. By capturing vapors that are typically emitted during refueling processes, it plays a crucial role in maintaining a safe working environment. Other equipment, such as a gas mask or fire extinguisher, while important for personal safety and emergency preparedness, does not specifically address the need to manage vapor exposure during fuel delivery. A fume hood is more commonly used in laboratory settings to control exposure to hazardous fumes and is not practical for outdoor fuel delivery situations. Thus, the vapor recovery system stands out as the most relevant and necessary equipment to ensure safe handling of fuel vapors during delivery.

6. In water systems, what is the main purpose of a filtration system?

- A. To increase pressure**
- B. To remove impurities**
- C. To heat the water**
- D. To add chemicals**

The main purpose of a filtration system in water systems is to remove impurities. Filtration is a critical process designed to ensure that water is clean and safe for use, whether for drinking, industrial processes, or irrigation. By effectively trapping particles such as sediments, debris, bacteria, and other contaminants, a filtration system helps maintain water quality and protects downstream systems and users. In contrast, increasing pressure is typically a function of pumps rather than filtration systems, as pressure relates more to the movement and distribution of water. Heating water is associated with water heaters, which are specifically designed for raising the temperature, and adding chemicals usually pertains to water treatment processes that adjust pH, disinfect, or clarify water, rather than filtering it. Therefore, the primary role of filtration is centered around the purification aspect, which directly supports the overall integrity and safety of the water supply.

7. When removing the KMU-416/F modification kit with 9 additional elements, how many elements must be removed from the front side to balance the manifold?

- A. 3**
- B. 6**
- C. 9**
- D. 15**

To balance the manifold after removing the KMU-416/F modification kit, which consists of 9 additional elements, it's important to understand the concept of maintaining equilibrium. When adjusting or removing components from any system, especially in fuel and water systems, it is crucial to maintain the balance to ensure continued optimal performance. In this case, 6 elements need to be removed from the front side of the manifold. This specific number is derived from the need to balance the additional weight and operational dynamics introduced by the 9 elements from the modification kit. By effectively removing 6 elements, you counteract the influence of the 9 elements that were added, leading to an overall balanced state. Balancing is critical for preventing undue stress on the manifold and related components and ensuring that the system operates efficiently and safely. Understanding the principles of balance in mechanical systems like the KMU-416/F modification lets technicians ensure operational safety and effectiveness when performing maintenance or modifications.

8. What minimum acceptable pressure reading at the hydraulic valve would rule out register creeping?

- A. 10 psi**
- B. 15 psi**
- C. 20 psi**
- D. 25 psi**

The minimum acceptable pressure reading at the hydraulic valve that would rule out register creeping is 25 psi. Register creeping refers to an undesirable condition where the pressure in a hydraulic system continues to rise even after the pump is turned off, indicating potential leakage or malfunction within the system. In this context, maintaining pressure levels is critical for the proper operation of hydraulic systems. A pressure reading of 25 psi is considered sufficient to ensure that the system is operating within its safe parameters. If the pressure is maintained at or above this level, it suggests that there are no significant leaks or performance issues that could lead to register creeping. Lower pressure readings, such as 10 psi, 15 psi, or 20 psi, may not provide enough assurance that the system is functioning correctly. These lower values could indicate potential issues within the hydraulic system, such as internal leakage or insufficient fluid levels, which could cause register creeping to occur. Thus, the higher threshold of 25 psi serves as a reliable indicator for ruling out these problems and ensuring the integrity of the hydraulic system.

9. When cleaning a tank without dikes, how far must an air compressor be positioned upwind?

- A. At least 20 feet from the manhole**
- B. At least 50 feet from the tank**
- C. Just inside the dike**
- D. Just outside the dike**

Positioning an air compressor at least 50 feet from the tank when cleaning a tank without dikes is critical for safety reasons. This distance helps minimize the risk of ignition of flammable vapors that may be present in the area surrounding the tank. While cleaning, volatile substances may be released, and having the compressor too close can potentially create a spark or heat source that could ignite any vapors. The 50-foot guideline is established based on safety protocols that account for the potential concentration of vapors and the operational hazards associated with the cleaning process. By maintaining this safe distance, the chance of any incidents or accidents occurring is substantially reduced, promoting a safer working environment. The other options do not provide the same level of safety assurance. For example, placing the compressor just 20 feet from the manhole might be insufficient to avoid risks associated with flammable vapors. The options regarding being just inside or outside the dike also do not apply in this case, as they are relevant only where dikes are in place to contain spills and do not ensure the safe distance needed for an air compressor. Thus, the requirement to position the air compressor at least 50 feet away is vital for compliance with safety regulations during tank cleaning operations.

10. What is the normal flow direction of fuel through a strainer?

- A. Outside to center**
- B. Center to outside**
- C. Outside to center to outside**
- D. Center to outside to center**

The normal flow direction of fuel through a strainer is from the center to the outside. This design allows for the effective trapping of contaminants that might be present in the fuel. As the fuel enters the strainer, it flows through the center and is filtered as it travels outward through the media of the strainer. Any particulates or debris that are larger than the strainer's filtration capability are captured, while the clean fuel continues outward to the system. The configuration ensures that the clean fuel is released into the system only after it has been properly filtered, which is critical for maintaining the integrity of the engine and fuel delivery system. The flow design enhances the efficiency of the filtering process by utilizing the entire surface area of the strainer, maximizing its efficacy in removing unwanted particles. This method is a fundamental operational principle in ensuring smooth fuel delivery and protecting sensitive engine components.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://wfsmsetbvol2.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE