

Wastewater New York State Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which type of pump is classified as a positive displacement pump?**
 - A. Centrifugal pump**
 - B. Gear pump**
 - C. Submersible pump**
 - D. Diaphragm pump**

- 2. Which factor is least likely to be considered when applying chemicals for phosphorus removal?**
 - A. Amount of phosphorus present**
 - B. Ambient air temperature**
 - C. Chemical dosage**
 - D. pH of the water**

- 3. At what pH range is hydrogen sulfide gas released most rapidly from wastewater?**
 - A. Greater than 10**
 - B. Between 6 and 8**
 - C. Between 5 and 7**
 - D. Less than 5**

- 4. If your MLSS level is 1,800 mg/L and your return sludge suspended solids value is 2,300 mg/L, what change should typically be made to the return sludge flow?**
 - A. Increase the flow rate**
 - B. Maintain the flow rate**
 - C. Decrease the flow rate**
 - D. Redirect the flow**

- 5. What do you call the vertical distance between the free water surface at the suction and that at the discharge of a pump?**
 - A. Static pressure**
 - B. Dynamic head**
 - C. Static head**
 - D. Friction head**

6. Why is chlorination of waste streams considered effective for odor control?

- A. It masks odors with a strong scent**
- B. Chlorine is non-reactive**
- C. Chlorine oxidizes many chemical compounds in water**
- D. It neutralizes pH levels**

7. What does the term "viscosity" refer to in fluid dynamics?

- A. The mass of a fluid**
- B. The temperature of a fluid**
- C. The resistance of a fluid to flow**
- D. The pressure exerted by a fluid**

8. What condition results from low pressures within a pump, causing boiling water and vapor bubbles?

- A. Surging**
- B. Siphoning**
- C. Cavitation**
- D. Priming**

9. Aeration tank diffusers are most commonly located where?

- A. At the bottom of the aeration tank**
- B. At the surface of the tank**
- C. On the side of the tank**
- D. In the overflow section of the tank**

10. What is nitrification best described as?

- A. Organic matter being converted to carbon dioxide**
- B. Ammonia is converted to nitrites and nitrates**
- C. Reduction of nitrates to nitrogen gas**
- D. Breakdown of proteins by enzymes**

Answers

SAMPLE

1. B
2. B
3. D
4. C
5. C
6. C
7. C
8. C
9. A
10. B

SAMPLE

Explanations

SAMPLE

1. Which type of pump is classified as a positive displacement pump?

- A. Centrifugal pump**
- B. Gear pump**
- C. Submersible pump**
- D. Diaphragm pump**

A positive displacement pump operates by trapping a fixed amount of fluid and forcing that volume into the discharge pipe. The gear pump exemplifies this mechanism, where two gears rotate within a casing to draw fluid in and push it out, effectively creating a constant flow regardless of downstream pressure. This characteristic is crucial in applications requiring a consistent flow rate and pressure, such as in wastewater systems. In contrast, centrifugal pumps (often used in wastewater treatment) work differently; they impart velocity to the fluid to create flow rather than displacing a fixed volume. Submersible pumps, while they can be positive displacement types, are typically centrifugal in design for most applications and are used in situations where pumps need to operate underwater. Diaphragm pumps also fall under the category of positive displacement pumps but are distinct from gear pumps in their mechanism of operation, which uses flexible diaphragms to move fluid. Thus, the gear pump is the most clear-cut example of a positive displacement pump among the options provided.

2. Which factor is least likely to be considered when applying chemicals for phosphorus removal?

- A. Amount of phosphorus present**
- B. Ambient air temperature**
- C. Chemical dosage**
- D. pH of the water**

When applying chemicals for phosphorus removal, the ambient air temperature is generally not a critical factor. The primary focus in the phosphorus removal process involves understanding the concentration of phosphorus present in the wastewater, determining the appropriate chemical dosage needed to effectively bind and remove the phosphorus, and maintaining an optimal pH to facilitate the chemical reactions involved. The amount of phosphorus present is essential since it directly influences how much chemical will be needed to achieve effective removal. Similarly, the chemical dosage is vital to ensure that the correct quantity of the removing agent is applied for efficiency and cost-effectiveness. The pH of the water can significantly affect the solubility of various phosphorus compounds and the effectiveness of the chemicals used for removal, making it a crucial factor in the treatment process. In contrast, while ambient air temperature can impact various biological processes in wastewater treatment, it has a minimal direct effect on the chemical reactions involved in phosphorus removal. Therefore, when considering the factors specifically related to chemical application for phosphorus removal, ambient air temperature is least likely to be a primary concern.

3. At what pH range is hydrogen sulfide gas released most rapidly from wastewater?

- A. Greater than 10**
- B. Between 6 and 8**
- C. Between 5 and 7**
- D. Less than 5**

Hydrogen sulfide gas is released from wastewater primarily in acidic conditions, often at a pH below 7. The production of hydrogen sulfide typically occurs when sulfide ions in wastewater are released from anaerobic processes, especially in environments where organic matter is being broken down by bacteria in the absence of oxygen. At a pH less than 5, the environment becomes more acidic, promoting the conversion of sulfide ions (S^{2-}) to hydrogen sulfide gas (H_2S), which is a volatile compound. The increased hydrogen ion concentration at this low pH facilitates the release of hydrogen sulfide from the dissolved phase into the gas phase. As the pH rises, especially above 7, the equilibrium shifts, leading to a decreased production of hydrogen sulfide gas as more sulfide remains in its ionic form, which is less volatile. Therefore, the most significant release of hydrogen sulfide occurs in acidic conditions, particularly at lower pH values, confirming that the release is most rapid when the pH is less than 5.

4. If your MLSS level is 1,800 mg/L and your return sludge suspended solids value is 2,300 mg/L, what change should typically be made to the return sludge flow?

- A. Increase the flow rate**
- B. Maintain the flow rate**
- C. Decrease the flow rate**
- D. Redirect the flow**

When the mixed liquor suspended solids (MLSS) level is at 1,800 mg/L and the return sludge suspended solids value is at 2,300 mg/L, a decision to decrease the return sludge flow is reasonable. The higher concentration of suspended solids in the return sludge (2,300 mg/L) indicates that the sludge being recycled contains a greater mass of solids compared to the mixed liquor. If the return sludge flow is maintained or increased without adjustment, the MLSS concentration could rise beyond the ideal operational level, which may lead to operational inefficiencies and potential issues like sludge bulking or overloading the system. By decreasing the return sludge flow, it allows for a better balance between the solids in the reactor and the solids being returned, helping to optimize treatment performance and maintain the desired MLSS levels. This adjustment supports effective treatment processes and ensures the system is functioning within its designed parameters.

5. What do you call the vertical distance between the free water surface at the suction and that at the discharge of a pump?

- A. Static pressure**
- B. Dynamic head**
- C. Static head**
- D. Friction head**

The vertical distance between the free water surface at the suction and that at the discharge of a pump is referred to as static head. This term specifically describes the height difference of the fluid being pumped, indicating the potential energy available to move the water from one elevation to another. In practical terms, this measurement is crucial for determining how much energy the pump must exert to lift the water to the desired height. Static head is distinct from dynamic head, which accounts for the kinetic energy of the fluid as it is in motion. It also differs from static pressure, which deals with pressure measurements at a given point in a fluid system, and friction head, which represents the loss of pressure due to friction as the fluid flows through pipes and fittings. Understanding these concepts is vital for calculating pump performance and ensuring efficient operation in wastewater systems.

6. Why is chlorination of waste streams considered effective for odor control?

- A. It masks odors with a strong scent**
- B. Chlorine is non-reactive**
- C. Chlorine oxidizes many chemical compounds in water**
- D. It neutralizes pH levels**

Chlorination of waste streams is considered effective for odor control primarily because chlorine oxidizes many chemical compounds present in the water. This oxidation process breaks down odor-causing substances, such as sulfides and organic matter that contribute to foul smells in wastewater. By converting these compounds into less odorous or non-odorous substances, chlorination effectively diminishes the overall odor emanating from the waste streams. While masking odors with a strong scent might briefly alleviate the situation, it does not address the root cause of the odors, making it a less effective long-term solution. Chlorine's reactivity is crucial in this context; it is not non-reactive, as oxidation relies on its reactive nature to break down unwanted compounds. Additionally, while chlorine can influence pH levels, its primary role in odor control is through oxidation rather than chemical neutralization of pH.

7. What does the term "viscosity" refer to in fluid dynamics?

- A. The mass of a fluid
- B. The temperature of a fluid
- C. The resistance of a fluid to flow**
- D. The pressure exerted by a fluid

Viscosity in fluid dynamics is a measure of a fluid's resistance to flow and deformation. It quantifies how thick or sticky a fluid is. When a fluid has high viscosity, it flows more slowly because the intermolecular forces within the fluid create a resistance to motion. In contrast, a low-viscosity fluid flows easily. This property has significant implications in wastewater management, as it affects how fluids behave in various systems, including pipes, treatment processes, and transport mechanisms. Understanding viscosity is crucial for engineers when designing systems that manage fluid movements, ensuring effective treatment and distribution in wastewater applications.

8. What condition results from low pressures within a pump, causing boiling water and vapor bubbles?

- A. Surging
- B. Siphoning
- C. Cavitation**
- D. Priming

Cavitation occurs when there is a significant drop in pressure within a pump, leading to the formation of vapor bubbles in the liquid being pumped. This phenomenon typically occurs when the pressure in the pump inlet drops below the vapor pressure of the liquid, causing the liquid to boil and generate small vapor pockets. When these bubbles travel to areas of higher pressure within the pump, they collapse violently, which can cause significant damage to the pump components and reduce operational efficiency. Understanding cavitation is crucial for proper pump operation, as it allows operators to recognize and mitigate conditions that might lead to this damaging occurrence.

9. Aeration tank diffusers are most commonly located where?

- A. At the bottom of the aeration tank**
- B. At the surface of the tank
- C. On the side of the tank
- D. In the overflow section of the tank

Aeration tank diffusers are typically placed at the bottom of the aeration tank for several important reasons. This positioning allows for maximum efficiency in the oxygen transfer process, which is crucial for the biological treatment of wastewater. When diffusers are located at the bottom, the air or oxygen introduced into the tank can rise through the mixed liquor, promoting better mixing and ensuring that microorganisms have consistent access to oxygen throughout the tank. Additionally, positioning the diffusers at the bottom helps to prevent clogging and keeps them submerged, reducing the chances of oxidation or contamination from surface debris or atmospheric conditions. This enhances the overall effectiveness of the aeration process, supporting the growth of aerobic bacteria responsible for breaking down organic matter in the wastewater. Other locations, such as the surface or sides of the tank, would not provide the same level of efficiency in oxygen diffusion or mixing. Moreover, placing diffusers in the overflow section would eliminate their ability to effectively aerate the wastewater, which is essential for suitable treatment outcomes.

10. What is nitrification best described as?

- A. Organic matter being converted to carbon dioxide**
- B. Ammonia is converted to nitrites and nitrates**
- C. Reduction of nitrates to nitrogen gas**
- D. Breakdown of proteins by enzymes**

Nitrification is best described as the process where ammonia is converted to nitrites and then to nitrates. This biological transformation is carried out by beneficial bacteria in aerobic conditions. The process plays a crucial role in the nitrogen cycle, helping to convert nitrogen in organic matter into forms that plants can easily absorb. In the first step, ammonia, which can be toxic at high concentrations, is oxidized to nitrites by bacteria such as *Nitrosomonas*. Following this, another group of bacteria, including *Nitrobacter*, further oxidizes nitrites to nitrates. This sequential process is essential for maintaining healthy aquatic ecosystems and soil fertility, and it minimizes the risk of ammonia pollution in wastewater. Understanding nitrification is vital for wastewater treatment processes, where it contributes to the removal of ammonia from effluents before they are released into the environment.

SAMPLE

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://newyorkstate-wastewater.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE