

VTNE Critical Care Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which emergency treatment is most appropriate for a Yorkie presenting with seizures and tetany after giving birth?**
 - A. Calcium gluconate IV**
 - B. Phenobarbital**
 - C. Tetanus anti-toxin**
 - D. Diazepam IV**

- 2. What is the implication of a hematocrit level of 22% in a dehydrated cat?**
 - A. The cat is likely in renal failure**
 - B. The cat is losing blood**
 - C. His true hematocrit is likely lower than 22%**
 - D. His true hematocrit is likely higher than 22%**

- 3. What procedure might a setup with a 60 cc syringe and a 3-way stopcock be indicative of?**
 - A. Thoracocentesis**
 - B. Decreasing intracranial pressure**
 - C. Tracheal drug administration**
 - D. Jugular catheter placement**

- 4. In which emergency situation would a patient present with signs of cyanosis?**
 - A. Airway obstruction**
 - B. Septic shock**
 - C. Heart failure**
 - D. Gastrointestinal obstruction**

- 5. What is the isotonic crystalloid total "shock dose" in dogs?**
 - A. 10-20 ml/kg**
 - B. 90 ml/kg**
 - C. 40-60 ml/kg**
 - D. 5 ml/kg**

6. Cardiac Output (CO) is primarily determined by which variables?

- A. Stroke volume x Heart rate**
- B. Heart rate x Systemic vascular resistance**
- C. Systemic vascular resistance x Systolic pressure**
- D. Systolic pressure x Stroke volume**

7. What complication can arise from non-cardiogenic pulmonary edema in electrocution cases?

- A. Increased blood pressure**
- B. Severe pain**
- C. Respiratory distress**
- D. Cardiac arrhythmias**

8. In an emergency scenario, what is the best site for catheterization for immediate fluid therapy in a large breed dog with a distended abdomen?

- A. Cephalic vein**
- B. Femoral artery**
- C. Jugular vein**
- D. Lateral saphenous vein**

9. What is primarily assessed first during the triage of an injured pet?

- A. Wounds**
- B. Respiratory and cardiovascular systems**
- C. Urine production**
- D. Blood glucose levels**

10. What is a normal central venous pressure (CVP) reading?

- A. 15-20 cm H₂O**
- B. Less than 0 cm H₂O**
- C. 10-15 cm H₂O**
- D. 0-10 cm H₂O**

Answers

SAMPLE

- 1. A**
- 2. C**
- 3. A**
- 4. A**
- 5. B**
- 6. A**
- 7. C**
- 8. A**
- 9. B**
- 10. D**

SAMPLE

Explanations

SAMPLE

1. Which emergency treatment is most appropriate for a Yorkie presenting with seizures and tetany after giving birth?

- A. Calcium gluconate IV**
- B. Phenobarbital**
- C. Tetanus anti-toxin**
- D. Diazepam IV**

In the scenario of a Yorkie experiencing seizures and tetany following childbirth, the most appropriate emergency treatment is calcium gluconate administered intravenously. This situation likely indicates a condition known as eclampsia or hypocalcemia, which can occur in nursing dogs due to the increased demand for calcium during lactation. Calcium gluconate works by rapidly increasing the calcium levels in the blood, addressing the immediate needs of the nervous system and reducing the risk of further seizures and muscle spasms associated with calcium deficiency. The rapid onset of action is critical in emergency situations, particularly when seizures are present, as they can lead to significant morbidity if not treated promptly. While other treatments such as anticonvulsants like phenobarbital or diazepam may be suitable for controlling seizures, they do not address the underlying cause of tetany and seizures related to low calcium levels. Tetanus anti-toxin would not be appropriate in this case as it is specific for tetanus caused by Clostridium tetani and not relevant to the symptoms exhibited by the Yorkie after birthing. Thus, the administration of calcium gluconate is the most immediate and effective treatment in this scenario, as it directly addresses the clinical signs of hypocalcemia.

2. What is the implication of a hematocrit level of 22% in a dehydrated cat?

- A. The cat is likely in renal failure**
- B. The cat is losing blood**
- C. His true hematocrit is likely lower than 22%**
- D. His true hematocrit is likely higher than 22%**

A hematocrit level of 22% in a dehydrated cat suggests an important physiological response to fluid loss. In dehydration, the concentration of red blood cells in the blood can appear elevated due to the reduced plasma volume, leading to a relative increase in hematocrit. However, a marked decrease in hydration means that there is not necessarily an actual increase in red blood cell mass. Thus, the true hematocrit could be lower than the measured value of 22% once rehydration occurs and normal plasma volume is restored. When interpreting a low hematocrit in the context of dehydration, it's crucial to understand that hydration status can greatly influence lab values. Thus, the apparent hematocrit may not reflect the physiological state of the blood. In other scenarios, such as actual blood loss or renal failure, the hematocrit might be expected to drop further or approach the lower limits of normal rather than appearing deceptively elevated. Therefore, the implication of the hematocrit level in a dehydrated cat strongly supports the idea that the true hematocrit is likely lower than the presented figure, reflecting transient changes due to fluid status rather than an accurate measure of red blood cell concentration.

3. What procedure might a setup with a 60 cc syringe and a 3-way stopcock be indicative of?

- A. Thoracocentesis**
- B. Decreasing intracranial pressure**
- C. Tracheal drug administration**
- D. Jugular catheter placement**

The setup with a 60 cc syringe and a 3-way stopcock is indicative of a thoracocentesis procedure. In thoracocentesis, fluid is aspirated from the pleural space, which is often necessary to diagnose or treat conditions such as pleural effusion. The 60 cc syringe allows for the collection of a significant volume of fluid, while the 3-way stopcock facilitates the manipulation of fluid flow. The use of a 3-way stopcock is crucial because it allows for multiple settings: the collection of pleural fluid, the ability to connect to drainage systems if needed, and the option to facilitate the introduction of therapeutic agents if required. This specific combination of equipment is tailored for procedures where accurate fluid management and control are essential, which aligns perfectly with the tasks performed during thoracocentesis. In contrast, while other procedures have different requirements and setups, they typically do not utilize both a large-volume syringe and a 3-way stopcock in the same manner as for thoracocentesis. For example, procedures aimed at decreasing intracranial pressure often involve more specialized devices rather than simple syringes and stopcocks. Similarly, tracheal drug administration would not typically involve a ple

4. In which emergency situation would a patient present with signs of cyanosis?

- A. Airway obstruction**
- B. Septic shock**
- C. Heart failure**
- D. Gastrointestinal obstruction**

Cyanosis is a clinical sign characterized by a bluish discoloration of the skin and mucous membranes, generally indicating inadequate oxygenation of the blood. In cases of airway obstruction, the airway is partially or completely blocked, preventing adequate airflow and oxygen delivery to the lungs. This lack of oxygen leads to decreased levels of oxygen in the blood, subsequently causing cyanosis as the tissues fail to receive the oxygen they need. While conditions like septic shock and heart failure can also impact oxygenation and potentially lead to signs of cyanosis at advanced stages, they do not typically present with this sign at the outset. Septic shock primarily affects blood pressure and circulation, while heart failure is more related to fluid dynamics and perfusion issues.

Gastrointestinal obstruction generally affects the digestive system and wouldn't directly lead to hypoxia or cyanosis in the same manner as an airway obstruction. Thus, airway obstruction is the most direct cause of cyanosis due to the immediate and critical impact it has on oxygen delivery to the body.

5. What is the isotonic crystalloid total "shock dose" in dogs?

- A. 10-20 ml/kg
- B. 90 ml/kg**
- C. 40-60 ml/kg
- D. 5 ml/kg

The isotonic crystalloid total "shock dose" in dogs is typically considered to be around 90 ml/kg. This dose is based on the understanding that dogs facing hypovolemic shock often require aggressive fluid resuscitation to restore adequate circulating volume and tissue perfusion. In cases of shock, the objective is to rapidly replace lost fluids and reestablish hemodynamic stability. The 90 ml/kg guideline serves as a general framework to ensure that adequate fluid assessment occurs, but it's important to adjust fluid therapy based on individual response and ongoing clinical condition. Other dosages provided would not adequately address the significant volume depletion seen in shock situations. For instance, administering only 10-20 ml/kg or as little as 5 ml/kg would typically be insufficient for effective resuscitation in critically ill dogs. The dosage of 40-60 ml/kg, while more substantial than the lower options, still falls short of the amount often necessary to effectively manage shock and achieve the desired stabilization of the patient's condition.

6. Cardiac Output (CO) is primarily determined by which variables?

- A. Stroke volume x Heart rate**
- B. Heart rate x Systemic vascular resistance
- C. Systemic vascular resistance x Systolic pressure
- D. Systolic pressure x Stroke volume

Cardiac Output (CO) is defined as the volume of blood the heart pumps per minute and is a crucial parameter in assessing cardiovascular health. The primary equation for calculating cardiac output is the product of stroke volume—the amount of blood ejected by the heart with each beat—and heart rate, which is the number of times the heart beats in one minute. This means that if either stroke volume or heart rate increases, cardiac output will also increase, assuming the other factor remains constant. Stroke volume is influenced by factors such as ventricular filling (preload), myocardial contractility (the heart's ability to contract), and afterload (the resistance the heart must overcome to eject blood). Heart rate is influenced by autonomic nervous system control and hormonal factors. In contrast, other combinations presented in the options focus on variables that do not directly define cardiac output. While systemic vascular resistance and blood pressure are important in the circulatory system, they do not factor into the direct calculation of CO in this context. Therefore, the correct relationship emphasizing stroke volume and heart rate effectively highlights the core elements that determine cardiac output.

7. What complication can arise from non-cardiogenic pulmonary edema in electrocution cases?

- A. Increased blood pressure**
- B. Severe pain**
- C. Respiratory distress**
- D. Cardiac arrhythmias**

Non-cardiogenic pulmonary edema is a condition characterized by the accumulation of fluid in the lungs that is not due to heart problems. In the context of electrocution, this form of edema can result from direct damage to the lung tissue or from a systemic inflammatory response triggered by the electric shock. These factors can lead to significant respiratory distress, manifesting as difficulty breathing, coughing, or increased respiratory effort. The lungs become less efficient in facilitating gas exchange due to the fluid, which can greatly impair oxygen delivery to the bloodstream and lead to hypoxia. Understanding the mechanisms of non-cardiogenic pulmonary edema is crucial for professionals dealing with electrocution cases, as recognizing respiratory distress early can inform treatment decisions and improve patient outcomes. Other options presented may be associated with electrocution, but they do not directly relate to the complication of non-cardiogenic pulmonary edema. For instance, increased blood pressure and cardiac arrhythmias are more closely associated with cardiogenic factors, while severe pain is more of a symptom than a direct complication of the pulmonary condition.

8. In an emergency scenario, what is the best site for catheterization for immediate fluid therapy in a large breed dog with a distended abdomen?

- A. Cephalic vein**
- B. Femoral artery**
- C. Jugular vein**
- D. Lateral saphenous vein**

In an emergency situation involving a large breed dog with a distended abdomen, the best site for catheterization for immediate fluid therapy is the jugular vein. The jugular vein is a large vessel that allows for the rapid administration of fluids, medications, and blood products, which is crucial in critical care scenarios where time is of the essence. In large breed dogs, the jugular vein is typically easily accessible, providing a reliable route for gaining venous access. This is particularly important in cases of volume depletion or shock, as swift fluid resuscitation can help stabilize the animal's condition. Other sites, while viable in certain situations, may not be as effective for urgent fluid therapy as the jugular vein. For instance, the cephalic vein can be used for catheterization, but its smaller diameter compared to the jugular may limit the flow rate of fluid administration, making it less ideal for emergencies requiring rapid volume expansion. The lateral saphenous vein, although accessible, is also a smaller vessel, potentially leading to similar limitations as the cephalic vein in an emergency setting. Choosing the jugular vein for catheterization underscores the priority of efficient and rapid intervention in critical care, particularly when dealing with acute abdominal conditions that can indicate

9. What is primarily assessed first during the triage of an injured pet?

- A. Wounds**
- B. Respiratory and cardiovascular systems**
- C. Urine production**
- D. Blood glucose levels**

During the triage of an injured pet, the primary focus is on assessing the respiratory and cardiovascular systems. This approach aligns with the principles of triage, which prioritize the stabilization of life-threatening conditions. The respiratory system is crucial because any compromise can lead to hypoxia and rapid deterioration of the patient's condition. Similarly, the cardiovascular system assessment is vital to ensure there is adequate blood circulation and perfusion of organs. Abnormalities in these systems can indicate critical situations that require immediate intervention, such as administering oxygen or fluids. Other assessments, such as evaluating wounds, urine production, or blood glucose levels, are important but are secondary to ensuring the animal's basic life-support systems are functioning properly. Addressing these vital signs first allows for prompt treatment that can significantly influence the outcome for the injured pet.

10. What is a normal central venous pressure (CVP) reading?

- A. 15-20 cm H₂O**
- B. Less than 0 cm H₂O**
- C. 10-15 cm H₂O**
- D. 0-10 cm H₂O**

A normal central venous pressure (CVP) reading typically ranges from 0 to 10 cm H₂O. This measurement reflects the pressure in the thoracic vena cava near the right atrium, providing insights into the patient's fluid status and cardiac function. A CVP within this range is generally considered indicative of normal circulatory volume and right heart function. When a CVP reading is above this normal range, it may suggest conditions such as fluid overload or heart failure, while readings below this range can indicate hypovolemia or dehydration. Understanding the normal range for CVP is crucial in critical care, as it aids in the assessment of a patient's hemodynamic status and helps guide fluid management and intervention strategies.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://vtnecriticalcare.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE