

vSphere ICM 8.x Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What configuration must be ensured when setting up networking within your vCenter Server?**
 - A. Using only ESXi distributed switches**
 - B. Setting up vSphere standard switches or vSphere distributed switches**
 - C. Relying solely on physical networking configurations**
 - D. Selecting legacy network configurations**
- 2. Which port is used to access the VAMI for the vCenter Server Appliance?**
 - A. 8080**
 - B. 9850**
 - C. 443**
 - D. 5480**
- 3. What is a potential fallback option if NTP server communication fails?**
 - A. Manual time adjustment**
 - B. Backup DNS server**
 - C. Local hardware timers**
 - D. PTP services**
- 4. vSphere Virtual Volumes virtualizes SAN and NAS devices by abstracting physical hardware resources into logical pools of capacity. True or False?**
 - A. True**
 - B. False**
 - C. Dependent on the configuration**
 - D. Only true for SAN, not NAS**
- 5. In the context of CPU virtualization, what does 'overcommitment' refer to?**
 - A. Allocating more virtual resources than physical resources available**
 - B. Prioritizing physical resources for critical workloads**
 - C. Reducing the number of virtual machines on a host**
 - D. Ensuring equal distribution of resources to all virtual machines**

6. What is a potential downside of software emulation for application compatibility?

- A. It requires less computational power**
- B. It often has slower performance compared to virtualization**
- C. It supports only modern applications**
- D. It is easier to manage than CPU virtualization**

7. Which scenario is best suited for using vSphere vMotion?

- A. Moving a powered-off VM between hosts**
- B. Load balancing VMs across hosts without downtime**
- C. Creating a backup copy of a VM**
- D. Upgrading hardware without impacting VM availability**

8. Which of the following steps is necessary when deploying vCenter Server using the vCenter Server GUI Installer?

- A. Connect to the target ESXi host or vCenter Server system**
- B. Decide on the backup frequency for the vCenter Server**
- C. Configure advanced security settings**
- D. Generate a usage report for VM resources**

9. What are the two types of rules that can be created in a vSphere DRS cluster to specify affinity?

- A. Affinity rules and security rules**
- B. Affinity rules and anti-affinity rules**
- C. Load balancing rules and affinity rules**
- D. Placement rules and affinity rules**

10. What statement about virtual switches in a virtualized environment is true?

- A. Virtual switches operate at the Network Layer**
- B. Virtual switches forward frames at the Physical Layer**
- C. Virtual switches can only connect to physical switches**
- D. Virtual switches do not support VLAN tagging**

Answers

SAMPLE

1. B
2. D
3. A
4. A
5. A
6. B
7. B
8. A
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What configuration must be ensured when setting up networking within your vCenter Server?

- A. Using only ESXi distributed switches
- B. Setting up vSphere standard switches or vSphere distributed switches**
- C. Relying solely on physical networking configurations
- D. Selecting legacy network configurations

Setting up networking within your vCenter Server requires ensuring that you have the appropriate type of switches configured. The correct answer involves using either vSphere standard switches or vSphere distributed switches. These virtual switches are essential components of the networking architecture within a vSphere environment. vSphere standard switches allow you to define networking policies and manage VM networking on an individual host basis. They are suitable for simpler deployments where central management isn't a necessity. However, as environments grow in complexity, vSphere distributed switches provide significant advantages. They offer centralized management across multiple hosts, allow for consistent policy application, and support advanced features like network I/O control, distributed port groups, and VLAN configurations. This dual option of using either type of switch ensures flexibility depending on the network architecture you are implementing. It aligns well with best practices for creating a robust virtual network infrastructure that can scale as needed. The other options do not provide the necessary framework for effective networking in a vCenter Server setup. Relying solely on physical networking configurations does not leverage the benefits of virtual networking, while using only ESXi distributed switches can limit options and might not be suitable for all environments. Selecting legacy network configurations does not support modern networking requirements and capabilities, making it less ideal for current best practices.

2. Which port is used to access the VAMI for the vCenter Server Appliance?

- A. 8080
- B. 9850
- C. 443
- D. 5480**

The vCenter Server Appliance Management Interface (VAMI) is specifically designed for managing various aspects of the vCenter Server Appliance, such as networking configuration, certificate management, and system updates. This interface is accessed through a web browser using a specific port. The correct port for accessing the VAMI is 5480. When you navigate to the VAMI, you would typically do so by entering the appliance's IP address or hostname followed by :5480 in your web browser (e.g., <https://<vcenter-ip>:5480>). This port is explicitly defined for VAMI to ensure that management traffic is separated from other types of traffic that the appliance might handle, contributing to both security and organization in network services. Understanding the purpose of the other ports helps clarify why 5480 is the correct choice. Port 8080 is generally used for HTTP traffic, which is not related to the VAMI. Port 443 is used for secure HTTPS traffic, which is commonly associated with accessing vCenter Server itself, but not specifically for the management interface. Port 9850 does not relate to typical vSphere processes or interfaces. Thus, 5480 is the designated and correct port for VAMI access within a vCenter Server Appliance.

3. What is a potential fallback option if NTP server communication fails?

- A. Manual time adjustment**
- B. Backup DNS server**
- C. Local hardware timers**
- D. PTP services**

The option of manual time adjustment serves as a practical fallback solution if communication with an NTP (Network Time Protocol) server fails. In scenarios where an NTP server cannot be reached, it may be necessary to manually set the time on the virtual machines or hosts to ensure they remain in sync, especially in environments where accurate timekeeping is critical for operations such as logging and event management. While other options may play important roles in a network environment, they do not address the specific issue of time synchronization. Backup DNS servers, for instance, are used to provide redundancy for name resolution, which is a different aspect of network configuration. Local hardware timers can maintain time for a short period but may not be reliable over the long term, especially in the absence of NTP synchronization. PTP (Precision Time Protocol) services are related but are typically used in different contexts, focusing on achieving high levels of time accuracy in local area networks but not directly serving as a fallback for NTP communication failure. Thus, manual time adjustment stands out as a direct and effective means of addressing the issue of time synchronization when NTP services are unavailable.

4. vSphere Virtual Volumes virtualizes SAN and NAS devices by abstracting physical hardware resources into logical pools of capacity. True or False?

- A. True**
- B. False**
- C. Dependent on the configuration**
- D. Only true for SAN, not NAS**

The statement is true. vSphere Virtual Volumes (VVols) indeed virtualize both SAN (Storage Area Network) and NAS (Network Attached Storage) devices by abstracting the physical hardware resources into logical pools of storage capacity. This abstraction allows for greater flexibility and efficiency in how storage resources are managed and allocated within a virtualized environment. VVols enable storage-aware operations, meaning that storage capabilities can be applied at a more granular level than traditional LUNs. It allows VMs (virtual machines) to directly interact with the storage devices, providing capabilities such as policy-based management, where specific storage policies can be applied to individual VMs or even individual VMDKs (Virtual Machine Disk files). This results in improved performance and storage optimization, as virtualized workloads can take advantage of varying storage features based on their requirements. Given this context, the assertion that vSphere Virtual Volumes virtualizes both SAN and NAS to create those logical pools of capacity is accurate, affirming the correctness of the answer.

5. In the context of CPU virtualization, what does 'overcommitment' refer to?

- A. Allocating more virtual resources than physical resources available**
- B. Prioritizing physical resources for critical workloads**
- C. Reducing the number of virtual machines on a host**
- D. Ensuring equal distribution of resources to all virtual machines**

Overcommitment in CPU virtualization specifically refers to the practice of allocating more virtual CPU resources to virtual machines than the actual physical CPUs available on the host system. This approach leverages the fact that not all virtual machines will use their allocated CPU resources to the fullest at all times. By overcommitting, you can maximize the utilization of the physical hardware and potentially run more virtual machines than you could if you strictly adhered to a one-to-one allocation of virtual CPUs to physical CPU cores. This method can be particularly effective in environments where workloads are not CPU-intensive or where there is a mixture of workloads that can tolerate bursts of resource demand. However, it's important to manage this carefully to avoid performance degradation, as competing workloads can lead to contention for the physical CPU resources. The other options do not accurately describe the concept of overcommitment in this context. For instance, prioritizing physical resources for critical workloads focuses on resource allocation strategies rather than the concept of exceeding available resources. Similarly, reducing the number of virtual machines on a host does not align with overcommitment, which actually implies an increase in the number of VMs based on the available resources. Finally, ensuring equal distribution of resources to all virtual machines contradicts the overcommitting principle, which is

6. What is a potential downside of software emulation for application compatibility?

- A. It requires less computational power**
- B. It often has slower performance compared to virtualization**
- C. It supports only modern applications**
- D. It is easier to manage than CPU virtualization**

Software emulation for application compatibility can present a significant downside in terms of performance. This is primarily due to the fact that software emulation translates instructions from the guest application to run on the host system, which incurs extra processing overhead. As a result, the execution of applications can be significantly slower than when using virtualization techniques that allow for more direct access to the hardware resources. Additionally, software emulation typically does not utilize the hardware acceleration features that modern CPUs provide, which could further exacerbate the performance issues. This is in contrast to other approaches, such as CPU virtualization, which can more effectively utilize the hardware to achieve better performance for applications. Choices that suggest benefits such as requiring less computational power and easier management do not align with the true nature of software emulation, which often demands more resources and can be complex to maintain due to its inherent limitations. Supporting only modern applications also misrepresents the capabilities of software emulation, as it can often run older applications that may not be compatible with current hardware.

7. Which scenario is best suited for using vSphere vMotion?

- A. Moving a powered-off VM between hosts
- B. Load balancing VMs across hosts without downtime**
- C. Creating a backup copy of a VM
- D. Upgrading hardware without impacting VM availability

Choosing to use vSphere vMotion for load balancing VMs across hosts without downtime is particularly advantageous in a virtualized environment. vMotion enables live migration of virtual machines from one physical host to another while they remain powered on and operational, ensuring that there is no interruption in service. This feature allows for dynamic resource management and optimization of workload distribution across hosts, which can significantly enhance the performance and responsiveness of applications running on those VMs. In scenarios where workload fluctuations occur, vMotion can be employed to shift VMs in response to resource demands or hardware constraints effectively. This not only improves overall system utilization but also facilitates maintenance tasks without impacting service availability, such as when performing hardware upgrades or addressing hardware failures. The other options, while they pertain to different functions within a virtual infrastructure, do not align with the primary utility of vMotion. For instance, moving a powered-off VM does not require the use of vMotion; instead, that can be accomplished with standard VM management tools. Creating a backup copy of a VM typically involves other solutions like snapshots or backup software, rather than live migration. Upgrading hardware without impacting VM availability can be achieved through features such as VMware Distributed Resource Scheduler (DRS) and Storage vMotion, but those functionalities do

8. Which of the following steps is necessary when deploying vCenter Server using the vCenter Server GUI Installer?

- A. Connect to the target ESXi host or vCenter Server system**
- B. Decide on the backup frequency for the vCenter Server
- C. Configure advanced security settings
- D. Generate a usage report for VM resources

When deploying vCenter Server using the vCenter Server GUI Installer, connecting to the target ESXi host or vCenter Server system is a vital initial step. This connection is necessary because the installer needs to know where to deploy the vCenter Server instance and facilitate the configuration process. Once connected, the installation can proceed with setting up the vCenter Server and integrating it with the selected ESXi host or existing vCenter environment. The other options are not prerequisites for the deployment process. While deciding on backup frequency is essential for operational planning, it does not directly affect the installation of vCenter Server itself. Configuring advanced security settings and generating usage reports are tasks that are typically addressed after the deployment is complete and are part of ongoing management and maintenance rather than initial installation. Therefore, connecting to the target host or system stands out as a necessary step in the installation process.

9. What are the two types of rules that can be created in a vSphere DRS cluster to specify affinity?

- A. Affinity rules and security rules**
- B. Affinity rules and anti-affinity rules**
- C. Load balancing rules and affinity rules**
- D. Placement rules and affinity rules**

In a vSphere Distributed Resource Scheduler (DRS) cluster, affinity rules and anti-affinity rules are used to control the placement of virtual machines (VMs) relative to each other based on specific needs or preferences. Affinity rules allow you to define that certain VMs should run on the same host, which can be beneficial for performance reasons or application requirements, such as when VMs are part of the same application stack and benefit from low latency communication. This grouping can enhance performance as it minimizes network latency between the VMs. On the other hand, anti-affinity rules specify that certain VMs should not run on the same host. This is particularly useful for high availability, as you want to ensure that critical components of an application are distributed across multiple hosts. In the event of a host failure, the remaining hosts would still have VMs running without impacting the entire application or service. The combination of these two types of rules provides the flexibility needed to optimize resource usage and maintain service availability according to the specific requirements of the workloads running in the DRS cluster.

10. What statement about virtual switches in a virtualized environment is true?

- A. Virtual switches operate at the Network Layer**
- B. Virtual switches forward frames at the Physical Layer**
- C. Virtual switches can only connect to physical switches**
- D. Virtual switches do not support VLAN tagging**

In a virtualized environment, the statement that virtual switches forward frames at the Physical Layer is accurate. Virtual switches function similarly to physical switches in that they handle the transmission and reception of data frames over the network. When virtual switches operate, they deal with data encapsulated in frames, which are then forwarded as needed to virtual machines or out to physical network interfaces. This function occurs at Layer 2 of the OSI model, which is often characterized as the Data Link Layer where switching takes place. While virtual switches do have the capability to interact with physical network components, they fundamentally manage Layer 2 operations by utilizing MAC addresses to forward frames to the appropriate destination. This is an essential feature of virtual switches, enabling efficient communication between virtual machines and between virtual machines and other network resources, including physical networks. Understanding the function of virtual switches is crucial for effective network management in a virtualized environment, ensuring communication is seamless and efficient across virtual and physical boundaries.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://vsphereicm8x.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE