Vascular Access Board Certification Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. How often should a SQ device be changed according to protocol?
 - A. Every 7 days
 - B. Every 14 days
 - C. Every 2 days
 - D. Every 4 days
- 2. What should be performed if a patient is able during the removal of a CVAD?
 - A. Deep breathing exercise
 - **B.** Valsalva Maneuver
 - C. Patient should remain silent
 - **D.** Talking to staff
- 3. Which feature distinguishes a central line from a peripheral line?
 - A. Thickness of the catheter
 - B. Type of vein into which it is inserted
 - C. Length of the line
 - D. Material composition of the catheter
- 4. What are the signs of infiltration at an IV site?
 - A. Swelling, redness, and warmth at the site
 - B. Swelling, discomfort, and changes in skin color at the infusion site
 - C. Redness, heat, and pus formation
 - D. Pain, swelling, and fever
- 5. What is a common indicator for the use of a central venous catheter?
 - A. Need for long-term intravenous therapy
 - B. Need for immediate blood transfusion
 - C. Minor surgical procedures
 - D. Short-term hydration

- 6. For a non-crawling and non-ambulatory pediatric patient, which vein is typically considered for access?
 - A. Popliteal vein
 - B. Saphenous vein
 - C. Brachial vein
 - D. Axillary vein
- 7. What is a primary consideration for using hemodialysis (HD) lines?
 - A. Avoid neck/chest for patients with tracheostomy
 - B. Can be used in all patients regardless of condition
 - C. Should be inserted only in the arm
 - D. Use only non-tunneled lines for placement
- 8. In pediatric patients, which placement site offers the longest dwell time for PICC?
 - A. Superior vena cava
 - B. Inferior vena cava
 - C. Femoral vein
 - D. Internal jugular vein
- 9. What should be avoided in patients with a history of severe uncontrolled sepsis when considering vein port placement?
 - A. Continuous monitoring
 - B. Insertion of a venous port
 - C. Long-term opioid therapy
 - D. Blood sampling
- 10. When should a dressing change at a catheter site occur?
 - A. When it is not visibly soiled
 - B. When the dressing is soiled, loose, or as per facility protocol
 - C. Every day, regardless of condition
 - D. Only when the catheter is being replaced

Answers

- 1. A 2. B

- 2. B 3. B 4. B 5. A 6. B 7. A 8. A 9. B 10. B

Explanations

1. How often should a SQ device be changed according to protocol?

- A. Every 7 days
- B. Every 14 days
- C. Every 2 days
- D. Every 4 days

The correct choice reflects the common protocol for changing a subcutaneous (SQ) device, typically set at every 7 days. This frequency is based on minimizing the risk of complications such as infection or catheter occlusion, while still allowing enough time for effective medication delivery, particularly with devices used for continuous infusion or insulin delivery. Standard practice emphasizes regular assessment of the site for any signs of irritation or infection, but changing the device weekly helps maintain device integrity and minimizes the risk of adverse events related to longer wear. Monitoring also ensures that the site remains healthy and that the device is functioning properly, which is crucial in settings like insulin pumps or continuous medication infusion. In clinical settings, various factors may influence this timing, such as the patient's individual needs or specific product guidelines, but the 7-day change protocol is generally accepted for many SQ devices. Ensuring adherence to this standard helps align with best practices in vascular access management and patient safety.

2. What should be performed if a patient is able during the removal of a CVAD?

- A. Deep breathing exercise
- **B.** Valsalva Maneuver
- C. Patient should remain silent
- D. Talking to staff

The Valsalva maneuver is recommended during the removal of a central venous access device (CVAD) because it helps to prevent air from entering the bloodstream, a condition known as air embolism. When the patient is able to perform this maneuver, they are instructed to take a deep breath and bear down as if having a bowel movement, which increases intrathoracic pressure and can reduce the risk of air being drawn into the vascular system. This technique is particularly useful during the crucial moment when the catheter is being removed, as it helps create a barrier to air entry. The patient's active participation in this process is important and can enhance safety. In contrast, while deep breathing exercises can be beneficial in various situations, they do not specifically address the risk of air embolism during the removal of a CVAD. Remaining silent during the procedure is neither required nor beneficial, as communication may be necessary for the healthcare team to ensure the patient's safety and comfort. Talking to staff, while it can serve as a means of distraction or coordination, does not offer the same protective mechanism against air embolism as the Valsalva maneuver does.

3. Which feature distinguishes a central line from a peripheral line?

- A. Thickness of the catheter
- B. Type of vein into which it is inserted
- C. Length of the line
- D. Material composition of the catheter

The distinguishing feature that differentiates a central line from a peripheral line is the type of vein into which it is inserted. Central lines are typically inserted into larger central veins, such as the superior vena cava or the femoral vein, allowing for direct access to the central circulation. This is essential for certain medical treatments, such as administering large volumes of fluids or medications that may irritate smaller veins. Peripheral lines, on the other hand, are inserted into smaller peripheral veins, primarily found in the arms or hands. While peripheral lines are suitable for short-term use and less invasive treatments, central lines are preferred for long-term therapy, total parenteral nutrition, or when peripheral access is difficult or insufficient. While the thickness of the catheter, length of the line, and material composition can vary between types of lines, they are not definitive features that categorize a line as central or peripheral. The key differentiator remains the anatomical location of the vein where the catheter is placed.

4. What are the signs of infiltration at an IV site?

- A. Swelling, redness, and warmth at the site
- B. Swelling, discomfort, and changes in skin color at the infusion site
- C. Redness, heat, and pus formation
- D. Pain, swelling, and fever

Infiltration occurs when intravenous (IV) fluid or medications leak into the surrounding tissue rather than being delivered into the bloodstream. Recognizing the signs of infiltration is crucial for timely intervention. Swelling at the infusion site is a primary indicator of infiltration, as fluid accumulates in the interstitial space. Discomfort may be experienced by the patient due to the pressure of the fluid in the tissue and the possible stretching of the skin. Changes in skin color can also occur; the affected area may appear pale or cool to the touch, which differs from signs of phlebitis or infection, where warmth and redness are common. The other choices contain signs that correlate more closely with different venous site issues. While swelling can be present in those cases, the additional symptoms like redness, heat, and pus formation are more indicative of phlebitis or infection rather than infiltration. Furthermore, symptoms such as pain and fever may also point to infection rather than purely infiltration. A comprehensive understanding of these differences is vital for healthcare professionals to provide appropriate care and response to IV complications.

- 5. What is a common indicator for the use of a central venous catheter?
 - A. Need for long-term intravenous therapy
 - B. Need for immediate blood transfusion
 - C. Minor surgical procedures
 - D. Short-term hydration

A central venous catheter (CVC) is typically indicated when there is a need for long-term intravenous therapy. This type of catheter allows for the delivery of medications, nutrition, and fluids over an extended period, which is particularly beneficial for patients with chronic conditions requiring ongoing treatment such as cancer, severe infections, or nutritional support. CVCs are designed to remain in place for weeks to months, making them ideal for situations where multiple or prolonged treatments are necessary. They also provide reliable access to large veins for the administration of irritating or caustic medications that could damage smaller peripheral veins. In contrast, immediate blood transfusions may be appropriately managed by peripheral venous access in many cases, and so a CVC is not a primary indicator. Minor surgical procedures typically do not require a central line as the risks associated with CVC placement do not outweigh the benefits for such short-term needs. Short-term hydration can often be managed through peripheral lines without necessitating the complexity and risks associated with central venous access.

- 6. For a non-crawling and non-ambulatory pediatric patient, which vein is typically considered for access?
 - A. Popliteal vein
 - **B. Saphenous vein**
 - C. Brachial vein
 - D. Axillary vein

In the context of vascular access for a non-crawling and non-ambulatory pediatric patient, the saphenous vein is typically considered the most appropriate choice. This vein runs along the length of the leg and is often relatively superficial, making it easier to access in younger children who may not have developed significant muscle mass or subcutaneous fat. In pediatric patients, especially those who are immobile, the saphenous vein presents a viable option because of its size, accessibility, and the fact that it can be located with minimal discomfort to the patient. Additionally, in younger patients, choosing a vein that is not deep or associated with crucial structures can help reduce the risk of complications during the vascular access procedure. The other veins listed are either less accessible or more likely to pose risks based on the patient's condition. For example, the popliteal vein may be difficult to locate without significant discomfort and can be associated with more serious structures and vessels routed nearby. The brachial vein, while accessible, may not be as superficial and may be more challenging to cannulate in smaller patients due to its position and surrounding anatomy. The axillary vein is also deeper and has more surrounding structures, making it a less suitable option for access in this

7. What is a primary consideration for using hemodialysis (HD) lines?

- A. Avoid neck/chest for patients with tracheostomy
- B. Can be used in all patients regardless of condition
- C. Should be inserted only in the arm
- D. Use only non-tunneled lines for placement

Using hemodialysis lines requires careful consideration to ensure the safety and effectiveness of the procedure. One primary consideration is the anatomical site chosen for line placement, particularly avoiding the neck and chest areas in patients who have a tracheostomy. This is crucial because these areas are already compromised in terms of vascular access, and introducing additional lines could lead to complications such as infections or pneumothorax. The presence of a tracheostomy may also heighten the risk of airway complications, and utilizing these regions for hemodialysis lines could pose significant risks to the patient's health. In contrast, hemodialysis lines are not suitable for every patient regardless of their condition; the choice of the site and type of line must consider each patient's specific medical circumstances. Additionally, while arms are commonly used for line placement, it is not correct that hemodialysis lines should only be inserted in the arm as there may be valid reasons for using other sites depending on the patient's vascular access history and current health status. Finally, while non-tunneled lines have their purpose, the statement regarding their exclusive use for placement is inaccurate since tunneled lines can also be appropriate in certain scenarios, particularly for long-term access.

8. In pediatric patients, which placement site offers the longest dwell time for PICC?

- A. Superior vena cava
- B. Inferior vena cava
- C. Femoral vein
- D. Internal jugular vein

The placement of a peripherally inserted central catheter (PICC) in pediatric patients ideally aims for a site that not only facilitates access but also maximizes the dwell time of the catheter. The superior vena cava is considered the optimal site for PICC placement due to its anatomical characteristics and blood flow dynamics. The superior vena cava provides consistent and rapid venous return directly to the heart, allowing for efficient blood circulation and minimizing potential complications such as thrombosis. The high blood flow in this area helps to maintain catheter patency, which is essential for medications and fluids administered over extended periods. Dwell time is prolonged because the superior vena cava tends to exhibit less turbulent blood flow, reducing the risk of catheter-related complications. In contrast, while the inferior vena cava can also be a site for placement, it is less commonly accessed for PICCs, particularly in pediatric patients. The femoral vein may offer accessibility, but it can be associated with a higher risk of infection and is generally avoided for long-term access routes. The internal jugular vein can allow for adequate placement and access; however, placement here may not provide the same level of dwell time as that offered by the superior vena cava. Given these considerations, the superior vena cava stands out as the

- 9. What should be avoided in patients with a history of severe uncontrolled sepsis when considering vein port placement?
 - A. Continuous monitoring
 - B. Insertion of a venous port
 - C. Long-term opioid therapy
 - D. Blood sampling

The consideration of placing a venous port in patients with a history of severe uncontrolled sepsis necessitates a cautious approach due to the increased risk of complications. Severe uncontrolled sepsis can lead to significant physiological changes, including altered hemodynamics and coagulopathy. In this context, venous port placement can pose substantial risks, such as the potential for infection, thrombosis, or even catheter-related bloodstream infections. The insertion of a venous port in these patients is generally avoided because their compromised immune systems and unstable conditions elevate the likelihood of adverse outcomes. Such scenarios may also hinder proper healing post-insertion, leading to higher rates of complications, which could be detrimental to the patient's already fragile state. Therefore, prioritizing patient safety and ensuring appropriate management of their sepsis is critical, making the placement of a venous port a less viable option in these instances. Other options, such as continuous monitoring, long-term opioid therapy, and blood sampling, are generally considered acceptable practices under supervision, as they can be managed more effectively even in the context of severe sepsis. However, the invasive nature and inherent risks associated with port insertion outweigh the potential benefits in this specific patient population.

- 10. When should a dressing change at a catheter site occur?
 - A. When it is not visibly soiled
 - B. When the dressing is soiled, loose, or as per facility protocol
 - C. Every day, regardless of condition
 - D. Only when the catheter is being replaced

A dressing change at a catheter site should occur when the dressing is soiled, loose, or in accordance with facility protocol. This practice is crucial for maintaining the sterility of the catheter site and preventing infections. A soiled dressing may harbor bacteria and other pathogens, which can increase the risk of infection. Similarly, a loose dressing may not provide adequate protection or may allow for contamination at the site. Facility protocols often provide specific guidelines on the frequency of dressing changes, which are developed to align with best practices in infection control and patient safety. Changing the dressing only when it is visibly soiled or loose ensures that it remains effective in protecting the catheter site. Regular assessments of the dressing's condition are necessary for ongoing care, and adhering to facility protocols promotes consistency and safety in patient care.