

# USAF EMS Protocol Practical Exam (Sample)

## Study Guide



**Everything you need from our exam experts!**

**Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.**

**ALL RIGHTS RESERVED.**

**No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.**

**Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.**

**SAMPLE**

# Table of Contents

|                                    |           |
|------------------------------------|-----------|
| <b>Copyright</b> .....             | <b>1</b>  |
| <b>Table of Contents</b> .....     | <b>2</b>  |
| <b>Introduction</b> .....          | <b>3</b>  |
| <b>How to Use This Guide</b> ..... | <b>4</b>  |
| <b>Questions</b> .....             | <b>5</b>  |
| <b>Answers</b> .....               | <b>8</b>  |
| <b>Explanations</b> .....          | <b>10</b> |
| <b>Next Steps</b> .....            | <b>16</b> |

SAMPLE

# Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

# How to Use This Guide

**This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:**

## 1. Start with a Diagnostic Review

**Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.**

## 2. Study in Short, Focused Sessions

**Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.**

## 3. Learn from the Explanations

**After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.**

## 4. Track Your Progress

**Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.**

## 5. Simulate the Real Exam

**Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.**

## 6. Repeat and Review

**Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.**

**There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!**

## **Questions**

SAMPLE

- 1. What is one of the primary responsibilities of an EMS provider in disaster response?**
  - A. To administer narcotics to all patients**
  - B. To assess, triage, and treat patients while ensuring safety**
  - C. To direct law enforcement operations**
  - D. To provide psychological counseling to victims**
- 2. Until what age should pediatric protocols be utilized on a patient?**
  - A. Until six years of age**
  - B. Until puberty or greater than 45 kg**
  - C. Until the age of 18**
  - D. Until the patient weighs less than 30 kg**
- 3. After how many hours should a tourniquet be replaced with a pressure dressing?**
  - A. 2 hours**
  - B. 4 hours**
  - C. 6 hours**
  - D. 12 hours**
- 4. What is the appropriate compression-to-ventilation ratio for adult CPR?**
  - A. 15 compressions to 2 breaths**
  - B. 30 compressions to 2 breaths**
  - C. 30 compressions to 1 breath**
  - D. 20 compressions to 2 breaths**
- 5. What should be administered immediately after a patient regains consciousness following Glucagon administration?**
  - A. Insulin**
  - B. Carbohydrates**
  - C. Electrolytes**
  - D. Dextrose 50%**

**6. What is the maximum fluid administration for a sepsis patient to maintain a systolic blood pressure greater than 90 mmHg?**

- A. 1 L
- B. 1.5 L
- C. 2 L
- D. 2.5 L

**7. How do you treat hypovolemia in a patient?**

- A. Administer oxygen
- B. IV/IO access and fluids
- C. Start CPR
- D. Apply cold compresses

**8. For a drowning patient in water less than 43 degrees F who has arrested, when is survival not likely?**

- A. 30 minutes
- B. 60 minutes
- C. 90 minutes
- D. 120 minutes

**9. What type of shock is characterized by a severe allergic reaction?**

- A. Cardiogenic shock
- B. Anaphylactic shock
- C. Hypovolemic shock
- D. Neurogenic shock

**10. If a patient presents with greater than 300 BGL, what should be administered as initial treatment?**

- A. Insulin immediately
- B. NS/LR 1000 mL (repeat X1 PRN to max 2 L)
- C. Dextrose 50%
- D. Carbohydrates only

## **Answers**

SAMPLE

1. B
2. B
3. B
4. B
5. B
6. C
7. B
8. C
9. B
10. B

SAMPLE

## **Explanations**

SAMPLE

**1. What is one of the primary responsibilities of an EMS provider in disaster response?**

- A. To administer narcotics to all patients**
- B. To assess, triage, and treat patients while ensuring safety**
- C. To direct law enforcement operations**
- D. To provide psychological counseling to victims**

One of the primary responsibilities of an EMS provider in disaster response is to assess, triage, and treat patients while ensuring safety. In a disaster scenario, conditions can be chaotic, and multiple patients may require urgent care simultaneously. The ability to assess a situation quickly allows EMS providers to prioritize care based on the severity of injuries, implementing the triage process to manage resources effectively and ensure that those in critical need receive attention first. Moreover, ensuring safety is crucial, as the environment may pose various risks, from hazardous materials to unstable structures. EMS providers must navigate these hazards to minimize danger to themselves, patients, and bystanders during their response, making effective assessment, triage, and treatment vital components of their role in such emergencies.

**2. Until what age should pediatric protocols be utilized on a patient?**

- A. Until six years of age**
- B. Until puberty or greater than 45 kg**
- C. Until the age of 18**
- D. Until the patient weighs less than 30 kg**

Pediatric protocols are specifically designed to address the unique physiological and anatomical differences in children compared to adults. The correct guideline for when to transition from pediatric to adult protocols typically involves considerations such as age and weight. The recommendation to utilize pediatric protocols until puberty or until the patient weighs greater than 45 kg takes into account several important factors related to growth and development. Puberty marks a significant change in a child's physique and metabolic responses, which can affect their physiological status and the effectiveness of treatments. Similarly, weight is a critical factor, as many medical calculations for medications and interventions are based on body weight. Typically, prior options, such as using a strict age cutoff like six years or 18 years, do not adequately consider the wide variability in physical maturity among younger patients. Additionally, using weight thresholds, such as those below 30 kg, would not appropriately reflect the developmental stage where pediatric protocols remain suitable. This nuanced approach correctly prioritizes both age and weight, ensuring that pediatric patients receive the most effective and safe treatment aligned with their developmental stage.

**3. After how many hours should a tourniquet be replaced with a pressure dressing?**

- A. 2 hours**
- B. 4 hours**
- C. 6 hours**
- D. 12 hours**

The recommended timeframe for replacing a tourniquet with a pressure dressing is generally around 4 hours after its application. This is based on medical guidelines which recognize that prolonged application of a tourniquet can lead to complications, such as tissue ischemia or necrosis, particularly if it remains in place for an extended period. After 4 hours, tissues may be more amenable to restoration of blood flow without the tourniquet, and transitioning to a pressure dressing allows for the re-establishment of circulation while maintaining adequate control of any bleeding. This practice helps balance the need for hemorrhage control with the prevention of potential tissue damage from prolonged constriction. Therefore, the 4-hour mark serves as a critical period for intervention.

**4. What is the appropriate compression-to-ventilation ratio for adult CPR?**

- A. 15 compressions to 2 breaths**
- B. 30 compressions to 2 breaths**
- C. 30 compressions to 1 breath**
- D. 20 compressions to 2 breaths**

The appropriate compression-to-ventilation ratio for adult CPR is 30 compressions to 2 breaths. This guideline is based on current resuscitation protocols, which emphasize the importance of high-quality chest compressions in restoring circulation during cardiac arrest. Having a ratio of 30:2 allows for effective and efficient compression because it provides a consistent method for lay rescuers and healthcare providers to perform CPR. This ratio supports the need to maintain blood flow through thorough and rapid chest compressions, which should be delivered at a rate of 100 to 120 compressions per minute. The reason for choosing this specific ratio is that the compressions help to circulate the blood, while the breaths ensure that oxygen is being delivered to the lungs and subsequently to the rest of the body. Maintaining this balance is crucial for providing effective life support until advanced medical help arrives. By following this standard, rescuers can maximize the chances of survival for a patient experiencing cardiac arrest. This ratio is widely adopted and recognized in both the American Heart Association (AHA) and other emergency response protocols.

**5. What should be administered immediately after a patient regains consciousness following Glucagon administration?**

- A. Insulin**
- B. Carbohydrates**
- C. Electrolytes**
- D. Dextrose 50%**

After a patient regains consciousness following Glucagon administration, it is essential to provide carbohydrates. Glucagon is typically used to treat hypoglycemia, as it stimulates the liver to release stored glucose into the bloodstream. Once the patient's blood sugar has stabilized enough for them to regain consciousness, administering carbohydrates is crucial to replenish their glycogen stores and maintain an adequate blood glucose level. Carbohydrates, typically in the form of oral food or drink, help to ensure that the blood sugar remains stable and provides a sustained source of glucose to the body. While options like insulin, electrolytes, and Dextrose 50% could be relevant in different situations, they do not directly address the immediate need for carbohydrate intake after Glucagon has successfully elevated the blood sugar and the patient is conscious. Therefore, the administration of carbohydrates is the most appropriate course of action at this stage to prevent a recurrence of hypoglycemia.

**6. What is the maximum fluid administration for a sepsis patient to maintain a systolic blood pressure greater than 90 mmHg?**

- A. 1 L**
- B. 1.5 L**
- C. 2 L**
- D. 2.5 L**

In the management of a sepsis patient, it is crucial to ensure adequate fluid resuscitation to maintain proper organ perfusion and prevent further complications. The recommended guideline for fluid administration often suggests that the initial bolus for a septic patient should be approximately 30 mL per kilogram of body weight. In practice, this typically equates to a maximum fluid administration of around 2 liters during the initial resuscitation phase. The target of maintaining a systolic blood pressure greater than 90 mmHg is vital, as this threshold helps ensure adequate cardiac output and organ perfusion. Achieving this target does typically require aggressive fluid resuscitation, especially in the early stages of managing septic shock. Dosing beyond 2 liters may be appropriate in certain situations based on patient response and specific clinical guidelines, but generally, 2 liters is established as a standard threshold during initial treatment in many advanced life support protocols. Thus, it aligns with the established practices for adequately treating a patient in septic shock.

## 7. How do you treat hypovolemia in a patient?

- A. Administer oxygen
- B. IV/IO access and fluids**
- C. Start CPR
- D. Apply cold compresses

The treatment for hypovolemia primarily involves establishing intravenous or intraosseous access to provide fluids to the patient. Hypovolemia, which is a significant decrease in blood volume, can lead to reduced tissue perfusion and shock. The most effective way to restore circulating blood volume and help stabilize the patient's condition is through the administration of fluids. This approach helps to replace lost blood volume, improve blood pressure, and enhance perfusion to vital organs. The focus on IV/IO access underscores the need for rapid intervention in emergency situations, where timely fluid resuscitation can make a critical difference in patient outcomes. This process may involve administering isotonic fluids such as normal saline or lactated Ringer's solution, depending on the specific clinical scenario and protocols. While administering oxygen, performing CPR, and applying cold compresses can be important interventions in various medical situations, they do not directly address the underlying issue of fluid loss in hypovolemia. Oxygen can support respiratory function, CPR is crucial in cases of cardiac arrest, and cold compresses may be useful for localized pain or swelling, but they do not restore blood volume or improve hemodynamic stability in a hypovolemic patient.

## 8. For a drowning patient in water less than 43 degrees F who has arrested, when is survival not likely?

- A. 30 minutes
- B. 60 minutes
- C. 90 minutes**
- D. 120 minutes

In the context of drowning patients, particularly those submerged in cold water, hypothermia plays a significant role in outcomes. Water temperatures below 43 degrees Fahrenheit can induce profound hypothermia, which can slow the metabolic processes in the body significantly. When someone experiences a drowning incident in such cold water, cold-related physiological responses can occur that protect the brain and other vital organs for a longer duration than might typically be expected. This is often referred to as the "lowering of the metabolic rate," which can allow for some degree of survival even after prolonged cardiac arrest, provided immediate resuscitation efforts are attempted. Research indicates that in cases of drowning in cold water, survival is still possible up to 90 minutes after cardiac arrest, provided the patient is rescued and treated with appropriate care. After this window, particularly after 90 minutes, the likelihood of successful resuscitation and meaningful recovery diminishes significantly. Therefore, the point at which survival is considered unlikely in such clinical scenarios is typically around 90 minutes, as this duration exceeds the threshold for effective resuscitation in the context of drowning in cold water.

**9. What type of shock is characterized by a severe allergic reaction?**

- A. Cardiogenic shock**
- B. Anaphylactic shock**
- C. Hypovolemic shock**
- D. Neurogenic shock**

Anaphylactic shock is characterized by a severe and potentially life-threatening allergic reaction leading to systemic responses in the body. During an anaphylactic reaction, there is a rapid release of histamines and other chemicals from mast cells and basophils, which causes widespread vasodilation and increased vascular permeability. This can result in significant hypotension, swelling, and difficulty breathing due to airway constriction and edema. Anaphylactic shock can develop quickly after exposure to an allergen, such as certain foods, insect stings, or medications, and it requires immediate medical intervention, often with the administration of epinephrine to counteract the effects of the reaction. Understanding the specific nature of anaphylactic shock is crucial for effective treatment and management in emergency medical situations.

**10. If a patient presents with greater than 300 BGL, what should be administered as initial treatment?**

- A. Insulin immediately**
- B. NS/LR 1000 mL (repeat X1 PRN to max 2 L)**
- C. Dextrose 50%**
- D. Carbohydrates only**

In the scenario where a patient presents with a blood glucose level (BGL) greater than 300 mg/dL, the initial treatment should focus on fluid replacement and management of potential dehydration, which is a common concern in hyperglycemic states.

Administering normal saline (NS) or lactated Ringer's (LR) solution at a volume of 1000 mL is crucial as it helps rehydrate the patient and improve circulation, especially if the patient is experiencing symptoms of hyperglycemia such as increased thirst and urination, which can lead to dehydration. This approach allows for stabilization of the patient's condition before administering insulin, which may follow fluid resuscitation. Insulin can be initiated to lower BGL; however, it should not be the first step without addressing fluid deficits. The other options do not adequately address the initial management needs in hyperglycemic presentations: - Insulin administration might lower blood glucose, but without adequate fluid support, it could lead to further complications. - Dextrose 50% is used to treat hypoglycemia, making it inappropriate for high BGL scenarios. - Carbohydrates are contraindicated since they would increase the blood glucose level, exacerbating the hyperglycemic condition. Thus,

# Next Steps

**Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.**

**As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.**

**If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at [hello@examzify.com](mailto:hello@examzify.com).**

**Or visit your dedicated course page for more study tools and resources:**

**<https://usafemsprotocol.examzify.com>**

**We wish you the very best on your exam journey. You've got this!**

**SAMPLE**