

USA Biology Olympiad (USABO) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Questions

SAMPLE

- 1. If carbon particles are injected into the blood of mice, where are they most likely to be found?**
 - A. In the Aorta**
 - B. In Plasma**
 - C. In Monocytes of the Spleen**
 - D. In Kidney Cells**

- 2. What is the impact of sexual processes, such as meiosis and fertilization, on allele frequencies within a population?**
 - A. They increase allele frequencies.**
 - B. They decrease allele frequencies.**
 - C. They have no direct effect.**
 - D. They may alter observed frequencies.**

- 3. In the context of superoxide dismutase 1, what role does copper play in the enzyme's function?**
 - A. Activator**
 - B. Inhibitor**
 - C. Substrate**
 - D. Cofactor**

- 4. Which of the following groups of plants has vascular tissue but does not produce seeds?**
 - A. Mosses**
 - B. Ferns**
 - C. Gymnosperms**
 - D. Angiosperms**

- 5. Rods and cones in the eye are associated with what types of vision, respectively?**
 - A. Color...light/dark**
 - B. Light/dark...color**
 - C. Peripheral...central**
 - D. Color...motion**

6. Which of the following transitions occurs during the reproductive process?

- A. Tube nucleus becomes a sperm nucleus.**
- B. Egg nucleus divides into two haploid nuclei.**
- C. Diploid zygote undergoes meiosis.**
- D. Sperm cell fertilizes multiple egg cells.**

7. What distinguishes all vertebrates with respect to their skeletal structure?

- A. A vertebral column**
- B. Presence of rib bones**
- C. A cranium**
- D. Presence of four limbs**

8. Which physiological change is commonly associated with kidney failure?

- A. Increased urine output**
- B. Lower potassium levels**
- C. Higher concentration of waste products in blood**
- D. Decrease in blood pressure**

9. Why is the sympathetic nervous system vital during a predator-prey encounter?

- A. It promotes relaxation and calm**
- B. It manages digestion processes**
- C. It initiates the fight-or-flight response**
- D. It regulates sleep patterns**

10. What effect does carrier-mediated diffusion have on the velocity of substances crossing cellular membranes?

- A. It always decreases velocity.**
- B. It has a constant velocity.**
- C. It can increase to a maximum value.**
- D. It cannot exceed passive diffusion rates.**

Answers

SAMPLE

- 1. C**
- 2. C**
- 3. D**
- 4. B**
- 5. B**
- 6. A**
- 7. A**
- 8. C**
- 9. C**
- 10. C**

SAMPLE

Explanations

SAMPLE

1. If carbon particles are injected into the blood of mice, where are they most likely to be found?

- A. In the Aorta**
- B. In Plasma**
- C. In Monocytes of the Spleen**
- D. In Kidney Cells**

When carbon particles are injected into the bloodstream, they are typically engulfed by phagocytic cells, such as monocytes and macrophages. The spleen is a key organ in the immune system and plays a significant role in filtering blood and removing foreign particles, including pathogens and debris. Monocytes in the spleen can migrate from the bloodstream and are actively involved in phagocytosis, meaning they will effectively absorb and engulf the injected carbon particles for removal from circulation. While carbon particles might initially travel through the aorta and plasma after injection, they would not remain there long-term. The kidneys are involved in filtering blood and excreting waste, but they are not the primary site for the uptake of injected carbon particles. Hence, the presence of carbon particles is most likely in the monocytes of the spleen as these cells perform the necessary immune response functions.

2. What is the impact of sexual processes, such as meiosis and fertilization, on allele frequencies within a population?

- A. They increase allele frequencies.**
- B. They decrease allele frequencies.**
- C. They have no direct effect.**
- D. They may alter observed frequencies.**

The correct answer focuses on how sexual processes, specifically meiosis and fertilization, interact with the genetic makeup of a population. Meiosis involves the production of gametes (sperm and eggs) through a reduction division, ensuring that these gametes carry only one allele from each gene pair. This process introduces genetic variation by shuffling alleles through crossing over and independent assortment. Fertilization then combines these gametes from two parents, further enhancing the genetic diversity of the offspring. While these processes play a crucial role in generating new genetic combinations, they do not directly influence the overall allele frequencies within a population in isolation. Instead, the impact on allele frequencies is more accurately seen over generations and influenced by additional factors such as natural selection, genetic drift, and migration. Therefore, one can understand that rather than having a direct effect, sexual processes create the variability upon which evolutionary forces act to change allele frequencies over time. The other options suggest that there is a definitive increase or decrease in allele frequencies or that there is an immediate effect, which does not capture the complexity of how sexual reproduction adds variation upon which other mechanisms work. Recognizing that sexual processes generate genetic diversity but do not directly change allele frequencies is key to understanding population genetics.

3. In the context of superoxide dismutase 1, what role does copper play in the enzyme's function?

- A. Activator**
- B. Inhibitor**
- C. Substrate**
- D. Cofactor**

Superoxide dismutase 1 (SOD1) is an important enzyme that catalyzes the conversion of superoxide radicals into hydrogen peroxide and molecular oxygen, thereby playing a vital role in cellular defense against oxidative stress. Copper acts as a cofactor in the enzyme's activity, which means it is an essential component that must be present for the enzyme to function properly. In SOD1, copper ions facilitate the catalytic activity of the enzyme by contributing to the redox reactions involved in the dismutation of superoxide.

Specifically, copper alternates between reduced and oxidized states as it interacts with superoxide, which is critical for the enzyme's ability to catalyze its reaction efficiently. The relationship between the enzyme and copper is integral - without copper, SOD1 cannot carry out its protective function, leading to an accumulation of superoxide that can cause cellular damage. Thus, classifying copper as a cofactor accurately reflects its essential role in the catalytic mechanism of superoxide dismutase 1.

4. Which of the following groups of plants has vascular tissue but does not produce seeds?

- A. Mosses**
- B. Ferns**
- C. Gymnosperms**
- D. Angiosperms**

Ferns are indeed the correct choice because they represent a group of vascular plants that reproduce through spores rather than seeds. They belong to the group known as pteridophytes and are characterized by the presence of vascular tissues—xylem and phloem—which allow for the transport of water, nutrients, and food throughout the plant. Unlike seed-producing plants, ferns have a distinct life cycle that includes a dominant sporophyte generation and a gametophyte generation. The sporophyte produces spores within structures called sporangia, which are often found on the underside of the leaves in clusters known as sori. When these spores are dispersed, they can germinate into gametophytes that eventually produce gametes for fertilization. Mosses are non-vascular plants, so they lack vascular tissue. Gymnosperms and angiosperms, on the other hand, are both seed-producing plants, with gymnosperms producing naked seeds and angiosperms producing seeds enclosed in fruits. Thus, ferns stand out as the only group listed that has vascular tissue but does not produce seeds.

5. Rods and cones in the eye are associated with what types of vision, respectively?

- A. Color...light/dark**
- B. Light/dark...color**
- C. Peripheral...central**
- D. Color...motion**

Rods and cones are two types of photoreceptor cells in the retina of the eye, each serving a distinct role in vision. Rods are primarily responsible for vision in low light conditions, providing our ability to see in dimly lit environments, which is often referred to as scotopic or light/dark vision. This capability allows us to detect various shades of gray and movements but not colors. Cones, on the other hand, are specialized for daylight vision and color discrimination. They enable photopic vision, which allows us to perceive a range of colors in well-lit conditions. There are three types of cones, each sensitive to different wavelengths of light corresponding to blue, green, and red. Thus, cones enable us to experience rich color vision. This understanding of the functions of rods and cones supports the conclusion that rods are associated with light/dark vision, while cones are responsible for color vision. Thus, the correct pairing of these functions is represented in the option indicating that rods are associated with light/dark vision, and cones are associated with color vision.

6. Which of the following transitions occurs during the reproductive process?

- A. Tube nucleus becomes a sperm nucleus.**
- B. Egg nucleus divides into two haploid nuclei.**
- C. Diploid zygote undergoes meiosis.**
- D. Sperm cell fertilizes multiple egg cells.**

The transition where the tube nucleus becomes a sperm nucleus is correct because, during fertilization in plants, the pollen grain germinates and forms a pollen tube that delivers the sperm cells to the ovule. Within the pollen tube, one of the nuclei, typically referred to as the tube nucleus, helps in the growth and guidance of the tube towards the ovule. Upon reaching the ovule, the tube nucleus is involved in the process that results in the fusion with the egg cell, ultimately contributing to the formation of the sperm nucleus. In contrast, the other options describe processes that do not accurately reflect key events during reproduction. The division of the egg nucleus into two haploid nuclei does not occur as part of fertilization; instead, the egg remains a single entity until fertilization occurs. The diploid zygote undergoing meiosis is a misrepresentation of zygote development, as the zygote typically undergoes mitotic divisions to develop into an embryo rather than meiosis, which reduces chromosome number. Lastly, sperm cells fertilizing multiple egg cells is not a standard reproductive strategy; usually, one sperm fertilizes one egg, leading to the formation of a zygote, while polyspermy—fertilization by multiple sperm—is

7. What distinguishes all vertebrates with respect to their skeletal structure?

- A. A vertebral column**
- B. Presence of rib bones**
- C. A cranium**
- D. Presence of four limbs**

The presence of a vertebral column, or backbone, is a fundamental characteristic that distinguishes all vertebrates. This structure provides support and protects the spinal cord while allowing for flexibility and movement. The vertebral column is a defining feature of the subphylum Vertebrata in the animal kingdom, which includes a diverse range of species such as mammals, birds, reptiles, amphibians, and fish. While other features listed, such as rib bones, a cranium, and four limbs, are important aspects of vertebrate anatomy, they are not universally found in all vertebrates. For instance, while most vertebrates possess a cranium, some early vertebrate forms may lack a developed skull. Additionally, the presence of rib bones and four limbs is not applicable to all vertebrate species; for example, fish may not have limbs in the traditional sense, and certain species may not possess ribs. Therefore, the vertebral column remains the most distinguishing characteristic of vertebrates as it is a universal trait across this group.

8. Which physiological change is commonly associated with kidney failure?

- A. Increased urine output**
- B. Lower potassium levels**
- C. Higher concentration of waste products in blood**
- D. Decrease in blood pressure**

In the context of kidney failure, a key physiological change is the accumulation of waste products in the blood, which occurs as the kidneys lose their ability to filter and excrete these substances effectively. Under normal circumstances, the kidneys regulate waste removal from the bloodstream, maintain fluid and electrolyte balance, and help manage blood pressure. When kidney function declines, waste products such as urea, creatinine, and other nitrogenous substances begin to build up in the blood, leading to a condition known as uremia. This buildup can result in various symptoms and health complications, as the body cannot efficiently eliminate these toxins. Increased urine output typically does not occur in kidney failure; rather, it is often a symptom of conditions such as diabetes insipidus or after certain types of acute kidney injury. If the kidneys are severely damaged or have completely failed, urine output may decrease significantly. Lower potassium levels are generally not associated with kidney failure. In fact, kidney failure often leads to elevated potassium levels (hyperkalemia) due to the kidneys' inability to excrete potassium efficiently. Blood pressure changes can vary in kidney failure, but a decrease in blood pressure is not a common characteristic. In many cases, kidney failure can lead to hypertension due to fluid overload and alterations

9. Why is the sympathetic nervous system vital during a predator-prey encounter?

- A. It promotes relaxation and calm**
- B. It manages digestion processes**
- C. It initiates the fight-or-flight response**
- D. It regulates sleep patterns**

The sympathetic nervous system plays a crucial role in the fight-or-flight response, which is vital during predator-prey encounters. When an organism senses danger, such as the presence of a predator, the sympathetic nervous system activates various physiological changes that prepare the body to either confront the threat (fight) or escape from it (flight). These changes include an increase in heart rate and blood pressure, dilation of airways to enhance oxygen intake, and the diversion of blood flow away from non-essential functions, such as digestion, towards the muscles to prepare for rapid movement. Additionally, the release of stress hormones like adrenaline further amplifies these responses, enhancing alertness and physical ability. In contrast, other options relate to functions that are not as critical during immediate threats. The promotion of relaxation and calm, as well as the management of digestion processes, are primarily associated with the parasympathetic nervous system, which dominates during restful states. Similarly, the regulation of sleep patterns falls outside the scope of acute responses to threats, emphasizing the specialized role of the sympathetic nervous system in high-stress situations where survival is at stake.

10. What effect does carrier-mediated diffusion have on the velocity of substances crossing cellular membranes?

- A. It always decreases velocity.**
- B. It has a constant velocity.**
- C. It can increase to a maximum value.**
- D. It cannot exceed passive diffusion rates.**

Carrier-mediated diffusion refers to the process by which substances move across cellular membranes with the help of specific proteins, known as carriers or transporters. This mechanism is crucial for the transport of larger or polar molecules that cannot easily pass through the lipid bilayer of the membrane. As the concentration of the substrate increases, the rate of transport via carrier proteins also increases, but only up to a certain point. This behavior is characterized by a saturation effect. Once all available carrier proteins are occupied, the rate of transport reaches a maximum value and cannot increase any further, even if the concentration of the substrate continues to rise. This saturation is a key feature of carrier-mediated processes and distinguishes them from simple diffusion. Understanding this helps clarify why this option is the correct choice. The rate of transport can indeed increase with the concentration of the substrate until a maximum saturation point is reached, after which the velocity stabilizes and no longer rises with increased substrate concentration. This is a fundamental concept in cell biology regarding how substances are transported across membranes.