

Unmanned Air Certification Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. True or False: The payload operator and Remote Pilot in Command (RIPC) collaborate to obtain the best imagery.**
 - A. True**
 - B. False**
 - C. This depends on the mission**
 - D. Not applicable to all missions**

- 2. What happens to air density as altitude increases?**
 - A. Increases**
 - B. Decreases**
 - C. Remains constant**
 - D. Fluctuates**

- 3. How would you describe the weight criteria for a small unmanned aircraft (UA)?**
 - A. It must weigh less than 25 pounds**
 - B. It must weigh less than 55 pounds**
 - C. It can weigh up to 100 pounds**
 - D. There is no weight restriction**

- 4. What is the primary advantage of a directional transceiver compared to an omni antenna transceiver?**
 - A. Cost-effectiveness**
 - B. Range**
 - C. Simplicity**
 - D. Durability**

- 5. What must a pilot do to operate a sUAS in Class B airspace?**
 - A. Maintain visual contact without restrictions**
 - B. Get prior authorization from Air Traffic Control (ATC)**
 - C. Fly autonomously without ATC approval**
 - D. Operate without a Remote Pilot Certificate**

6. For what purpose may the Federal Aviation Administration grant a Certificate of Waiver?

- A. For unrestricted flight in all airspaces**
- B. For predetermined operational limits under Part 107**
- C. For experimental aircraft testing**
- D. For recreational flying without restrictions**

7. What does monitoring the system's location during a UAS flyaway help achieve?

- A. Determining flight paths of other aircraft**
- B. Ensuring the remote pilot has complete control**
- C. Notifying ATC if new authorization is required**
- D. Avoiding battery inspections**

8. In aerodynamics, the angle at which an airfoil is tilted is primarily responsible for which force?

- A. Weight**
- B. Drag**
- C. Thrust**
- D. Lift**

9. What is an essential purpose of the warning lights in a UAS?

- A. To indicate battery power levels**
- B. To alert remote pilots of flight performance issues**
- C. To show the status of GPS connectivity**
- D. To signify successful takeoff and landing**

10. Cargo or agricultural spray are classified as what type of payload?

- A. Fixed payloads**
- B. Disposable**
- C. Dispensable**
- D. Permanent payloads**

Answers

SAMPLE

1. A
2. B
3. B
4. B
5. B
6. B
7. C
8. D
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. True or False: The payload operator and Remote Pilot in Command (RIPC) collaborate to obtain the best imagery.

- A. True**
- B. False**
- C. This depends on the mission**
- D. Not applicable to all missions**

The statement is true because the roles of the payload operator and the Remote Pilot in Command (RIPC) typically involve collaboration to optimize the quality of imagery captured during a mission. The RIPC is responsible for flying the unmanned aircraft and making decisions about navigation and safety, while the payload operator specifically manages the camera or imaging equipment. By working together, they can synchronize their actions to ensure that the imaging equipment is positioned correctly and operated efficiently, allowing for high-quality imagery. This collaboration is crucial in various types of missions, especially those that require precise imaging for applications such as surveying, inspection, or search and rescue operations. The notion that this teamwork might depend on the mission or that it is not applicable to all missions resonates with specific contexts but does not negate the fundamental need for collaboration to achieve optimal results in most imaging scenarios.

2. What happens to air density as altitude increases?

- A. Increases**
- B. Decreases**
- C. Remains constant**
- D. Fluctuates**

As altitude increases, air density decreases. This phenomenon occurs because the atmospheric pressure diminishes as one moves higher into the atmosphere. At higher altitudes, there is less air above a given surface than at lower altitudes, which results in a lower weight of air pressing down and consequently a decrease in air density. Factors contributing to this decrease in density include the reduced number of air molecules per unit volume as you ascend and the fact that the atmosphere becomes less compressed at higher altitudes. This understanding is crucial in fields such as aviation and meteorology, as it affects factors like aircraft performance, weather patterns, and the behavior of unmanned aerial vehicles (UAVs). The other choices do not accurately reflect the behavior of air density with altitude. Air density does not increase or remain constant with altitude, nor does it fluctuate significantly; it consistently decreases as altitude rises.

3. How would you describe the weight criteria for a small unmanned aircraft (UA)?

- A. It must weigh less than 25 pounds**
- B. It must weigh less than 55 pounds**
- C. It can weigh up to 100 pounds**
- D. There is no weight restriction**

The weight criteria for a small unmanned aircraft is defined by regulations set forth by the FAA. Specifically, a small unmanned aircraft is classified as one that weighs less than 55 pounds, which includes everything from the aircraft itself to any payload it carries. This weight limit is crucial as it determines the operational framework and regulatory requirements that govern the use of UAs in various applications, such as commercial and recreational use. The distinction of 55 pounds is particularly important for ensuring safety and compliance in airspace management. Weighing less than this threshold means the aircraft can operate under specific regulations that promote safer integration into the national airspace system. Additionally, this weight limit allows for a broader range of users, including hobbyists and commercial entities, to operate small UAs without necessitating extensive licensing or regulatory hurdles that are applicable to larger aircraft. Understanding this weight criterion is essential for anyone involved in operating, designing, or regulating unmanned aircraft. It helps ensure that operators are aware of their responsibilities and the limitations placed on their equipment. Knowing that aircraft above this weight would fall under different regulations influences what types of aircraft can be used for specific purposes and guides operational planning.

4. What is the primary advantage of a directional transceiver compared to an omni antenna transceiver?

- A. Cost-effectiveness**
- B. Range**
- C. Simplicity**
- D. Durability**

A directional transceiver primarily offers enhanced range compared to an omni antenna transceiver. This advantage arises from the way a directional antenna focuses the transmitted signal in a specific direction rather than dispersing it uniformly in all directions, as is the case with an omni antenna. By concentrating the signal, a directional transceiver can achieve greater distances and improve the quality of the link in that focused direction. This is particularly beneficial in applications requiring long-range communication, such as in remote piloting and surveillance operations where the signal strength is critical. The design of directional antennas allows for better management of the radio waves, minimizing interference from non-target areas and improving overall signal clarity. This focused approach results in more effective communication over longer distances, which can be crucial for unmanned aerial systems operating in expansive and potentially challenging environments.

5. What must a pilot do to operate a sUAS in Class B airspace?

- A. Maintain visual contact without restrictions
- B. Get prior authorization from Air Traffic Control (ATC)**
- C. Fly autonomously without ATC approval
- D. Operate without a Remote Pilot Certificate

To operate a small Unmanned Aircraft System (sUAS) in Class B airspace, it is essential for the pilot to obtain prior authorization from Air Traffic Control (ATC). Class B airspace is typically found around the busiest airports in the United States and is designed to protect the operations of manned aircraft. Because of the high volume of traffic and the complexity of operations in these areas, any unmanned aircraft wishing to enter must coordinate with ATC to ensure safety and compliance with established air traffic procedures. Prior authorization ensures that the unmanned aircraft does not interfere with manned aircraft operations and allows ATC to monitor the sUAS effectively. This process typically involves the pilot submitting a request through the appropriate channels, which ATC then reviews. Approval may come with specific conditions or restrictions to mitigate any potential risks associated with operating in such a busy airspace. Other choices do not account for the regulatory requirements established for safe operations within controlled airspace. For instance, maintaining visual contact without restrictions is not sufficient on its own, as the safety of both the sUAS and manned aircraft must be ensured through communication with ATC. Autonomous operations without prior approval contradict safety protocols, as they increase the risk of airspace conflicts. Operating

6. For what purpose may the Federal Aviation Administration grant a Certificate of Waiver?

- A. For unrestricted flight in all airspaces
- B. For predetermined operational limits under Part 107**
- C. For experimental aircraft testing
- D. For recreational flying without restrictions

The Federal Aviation Administration (FAA) grants a Certificate of Waiver specifically to allow operations that deviate from the established regulations under Part 107, while still ensuring safety and operational integrity. The waiver is designed for operators to conduct operations under conditions that would typically be restricted, such as flying beyond visual line of sight, flying at night, or operating over people. By granting a Certificate of Waiver, the FAA enables operators to conduct specified activities that are not normally allowed, provided they meet certain safety standards and operational limits. This careful oversight ensures that even with waived restrictions, safety remains a priority. Therefore, a waiver provides the flexibility needed for businesses and individuals to innovate within controlled parameters outlined by the FAA. The other options imply broader or less regulated contexts that don't align with the FAA's structured oversight. For example, unrestricted flight in all airspaces does not adhere to the safety protocols that waivers require. The context of experimental aircraft testing and recreational flying without restrictions also diverges from the waivers' intended purpose, which focuses on specific operational limits rather than blanket permissions.

7. What does monitoring the system's location during a UAS flyaway help achieve?

- A. Determining flight paths of other aircraft**
- B. Ensuring the remote pilot has complete control**
- C. Notifying ATC if new authorization is required**
- D. Avoiding battery inspections**

Monitoring the system's location during a UAS flyaway is critical for ensuring that the remote pilot can quickly assess the UAS's situation and determine the necessary actions. One of the primary objectives of tracking the UAS's location is to notify Air Traffic Control (ATC) if the UAS veers into controlled airspace or encounters other regulatory restrictions that might require immediate authorization. This is especially important for maintaining safety and compliance with aviation regulations, as unauthorized UAS operations can pose risks to manned aircraft and hinder air traffic management. The other options may not directly correlate with the specific function of monitoring location during a flyaway. For instance, while understanding the flight paths of other aircraft is important, it is not the primary focus of monitoring the UAS's own location in this context. Similarly, ensuring complete control by the remote pilot implies that they are in command of the situation; however, a flyaway situation often indicates a loss of control. Notifying ATC for new authorization is essential for safety and compliance, while avoiding battery inspections does not relate to monitoring location during a flyaway scenario.

8. In aerodynamics, the angle at which an airfoil is tilted is primarily responsible for which force?

- A. Weight**
- B. Drag**
- C. Thrust**
- D. Lift**

The angle at which an airfoil is tilted is primarily responsible for generating lift. When an airfoil, such as a wing, is tilted relative to the oncoming airflow, this angle is referred to as the angle of attack. As the angle of attack increases, the airfoil alters the flow of air above and below it, leading to a difference in pressure. The pressure on the upper surface of the airfoil becomes lower than that on the lower surface, resulting in an upward force known as lift. This principle is fundamental to flight, as it allows an aircraft to rise and maintain altitude. The relationship between the angle of attack and lift is critical for pilots to understand, as an improper angle can lead to insufficient lift, potentially causing altitude loss or stall conditions. Hence, the correct answer highlights the importance of the angle of attack in producing lift, a key force in aerodynamics that enables flight.

9. What is an essential purpose of the warning lights in a UAS?

- A. To indicate battery power levels
- B. To alert remote pilots of flight performance issues**
- C. To show the status of GPS connectivity
- D. To signify successful takeoff and landing

The primary function of the warning lights in an Unmanned Aerial System (UAS) is to alert remote pilots of flight performance issues. These lights provide immediate visual feedback indicating problems that may arise during flight, such as low battery, loss of communication, or other critical system failures. This is crucial for maintaining operational safety and allowing the pilot to take appropriate action in response to any warnings. While other choices involve aspects relevant to flight operations, they do not specifically capture the primary role of warning lights as indicators of performance-related concerns. The ability of a UAS to communicate potential flight issues through visual signals is vital for ensuring both the safety of the operation and the efficiency of the mission being conducted.

10. Cargo or agricultural spray are classified as what type of payload?

- A. Fixed payloads
- B. Disposable
- C. Dispensable**
- D. Permanent payloads

Cargo or agricultural spray are classified as dispensable payloads because they are intended to be released or distributed during the operation of an unmanned aerial vehicle (UAV). In the context of UAV operations, dispensable payloads are typically materials or products that are used during a flight and then either dropped or sprayed over a specific area. In agricultural applications, for instance, a UAV may carry a payload of fertilizers or pesticides and then dispense these materials to cover crops effectively. Similarly, for cargo operations, goods that are transported are delivered to their destination and removed from the UAV. This distinction highlights the non-permanent nature of such payloads, as they are utilized during a flight and no longer part of the UAV once the delivery or application is completed. Other classifications, like fixed payloads, refer to items permanently attached to the UAV and do not change between missions, which is not applicable here since these payloads are specifically meant to be used and released. Permanent payloads likewise imply a constant presence on the UAV, while disposable generally refers to items that are used once and discarded but typically not in the context of aerial operations for cargo or agricultural applications. Thus, dispensable accurately captures the intended use and nature of such payloads.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://unmannedair.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE