

University of Toronto (UofT) BCH210H1 Biochemistry I - Proteins, Lipids and Metabolism Midterm Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. How do peripheral proteins typically interact with the membrane?**
 - A. By forming strong covalent bonds**
 - B. Through hydrophobic and ionic interactions**
 - C. Via direct insertion into the bilayer**
 - D. By requiring harsh detergents for removal**

- 2. What is a characteristic feature of sphingolipids?**
 - A. Long chain alcohol as a tail**
 - B. Glycerol as a backbone**
 - C. Carbohydrate-rich structure**
 - D. Presence of a phosphate group**

- 3. Which of the following is a characteristic of hydrophilic molecules?**
 - A. They are always non-polar**
 - B. They readily dissolve in water**
 - C. They repel water molecules**
 - D. They do not interact with ions**

- 4. Which functional group would you expect to be involved in hydrogen bonding with water?**
 - A. Alkane**
 - B. Thiol**
 - C. Aldehyde**
 - D. Alkyl**

- 5. What is a common example of affinity chromatography?**
 - A. Utilizing size exclusion to separate proteins**
 - B. Using carboxymethyl to bind positively charged peptides**
 - C. His tags binding to nickel-NTA resin**
 - D. Employing dialysis to remove excess salts**

6. In terms of beta-sheet structure, what properties can different sides of the sheet have?

- A. All sides are identical**
- B. Different sides can have different properties**
- C. They are all hydrophilic**
- D. They are uniform due to hydrogen bonding**

7. What is FRET (Fluorescence/Forster Resonance Energy Transfer) primarily used for?

- A. To measure pH changes in solutions**
- B. To transfer energy from a donor fluorophore to an acceptor fluorophore in close proximity**
- C. To isolate specific proteins from a mixture**
- D. To enhance the intensity of fluorescent tags**

8. How do hydrophilic groups interact with water to promote solubility?

- A. They repel water molecules**
- B. They form strong bonds with other hydrophilic groups**
- C. They maximize the number of interactions with water**
- D. They cause water to evaporate quickly**

9. What is a zymogen?

- A. An active enzyme that functions immediately**
- B. An inactive enzyme precursor**
- C. A type of coenzyme**
- D. A degraded form of an enzyme**

10. What is the main structural component of cell membranes?

- A. Triacylglycerides**
- B. Phospholipids**
- C. Cholesterol**
- D. Glycolipids**

Answers

SAMPLE

1. B
2. A
3. B
4. C
5. C
6. B
7. B
8. C
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. How do peripheral proteins typically interact with the membrane?

- A. By forming strong covalent bonds**
- B. Through hydrophobic and ionic interactions**
- C. Via direct insertion into the bilayer**
- D. By requiring harsh detergents for removal**

Peripheral proteins typically interact with the membrane through hydrophobic and ionic interactions. Unlike integral membrane proteins, which embed themselves within the lipid bilayer, peripheral proteins are located on the surface of the membrane or loosely associated with it. Their interactions with the membrane are usually non-covalent and are mediated by a combination of hydrophobic interactions with the lipid bilayer and ionic interactions with the charged groups of lipids or proteins. This type of interaction allows peripheral proteins to associate reversibly with the membrane, meaning they can be easily detached without disrupting the membrane structure. This is in contrast to options that suggest strong covalent bonds, direct insertion into the bilayer, or the need for harsh detergents to remove them, which do not accurately represent the nature of peripheral protein-membrane interactions. By understanding these interactions, one can appreciate the functional versatility of peripheral proteins in cellular processes, including signaling and structural support.

2. What is a characteristic feature of sphingolipids?

- A. Long chain alcohol as a tail**
- B. Glycerol as a backbone**
- C. Carbohydrate-rich structure**
- D. Presence of a phosphate group**

Sphingolipids are characterized by having a long-chain fatty acid as part of their structure, with sphingosine serving as their backbone. Sphingosine is an amino alcohol that contributes to the unique features of sphingolipids compared to other classes of lipids, such as glycerolipids. The long-chain nature of the fatty acids often provides these molecules with specific properties related to membrane fluidity and stability. In contrast, sphingolipids do not typically contain glycerol as a backbone, as this would classify them as glycerolipids instead. They can also include carbohydrate moieties, but not all sphingolipids are carbohydrate-rich, which makes that feature less definitive. Finally, while some sphingolipids may have a phosphate group (particularly sphingomyelin), not all sphingolipids possess this characteristic, so it cannot be considered a universal feature of this class of lipids.

3. Which of the following is a characteristic of hydrophilic molecules?

- A. They are always non-polar**
- B. They readily dissolve in water**
- C. They repel water molecules**
- D. They do not interact with ions**

Hydrophilic molecules are characterized by their ability to interact favorably with water. This property is primarily due to their polar functional groups that can form hydrogen bonds with water molecules. As a result, they readily dissolve in water, allowing them to participate in biological processes where water is a solvent. This characteristic is essential in biological systems, as many biochemical reactions occur in aqueous environments, making the solubility of substances critical for metabolism and cellular functions. In contrast, non-polar substances do not interact well with water and tend to be hydrophobic rather than hydrophilic. The other options either describe properties inconsistent with hydrophilic behavior or refer to interactions that do not define hydrophilic molecules directly. Thus, the ability to readily dissolve in water is the definitive characteristic of hydrophilic molecules.

4. Which functional group would you expect to be involved in hydrogen bonding with water?

- A. Alkane**
- B. Thiol**
- C. Aldehyde**
- D. Alkyl**

The aldehyde functional group features a carbonyl (C=O) group, which is polar due to the difference in electronegativity between the carbon and oxygen atoms. This polarity allows aldehydes to form hydrogen bonds with water molecules. In hydrogen bonding, the partially positive hydrogen atoms from water can interact with the partially negative oxygen atom of the carbonyl group, resulting in a stable interaction. In contrast, alkanes and alkyl groups are composed primarily of carbon and hydrogen, which do not have significant electronegativity differences. Therefore, they are non-polar and do not readily engage in hydrogen bonding with water. Thiols, while they possess a sulfur atom that can form weak hydrogen bonds due to the presence of the -SH group, they do not form hydrogen bonds as robustly as the carbonyl in aldehydes does. Thus, aldehydes are the most favorable group for hydrogen bonding with water among the given choices.

5. What is a common example of affinity chromatography?

- A. Utilizing size exclusion to separate proteins
- B. Using carboxymethyl to bind positively charged peptides
- C. His tags binding to nickel-NTA resin**
- D. Employing dialysis to remove excess salts

Affinity chromatography is a powerful technique used to purify proteins based on their specific interactions with other molecules. The choice involving His tags binding to nickel-NTA resin is a prime example of this technique. In this process, recombinant proteins that have been genetically engineered to include a polyhistidine (His) tag are exposed to a nickel-NTA resin. The imidazole side chains of the histidine residues in the protein form strong, specific interactions with the nickel ions immobilized on the resin. This allows for the selective capture of His-tagged proteins from a mixture, enabling effective purification. After the binding step, unbound contaminants can be washed away, and the desired protein can be eluted by competing off the His tag, typically using a solution with high imidazole concentration. In contrast, the other options do not represent affinity chromatography. Utilizing size exclusion to separate proteins is a method based on the size of molecules rather than specific interactions. Using carboxymethyl to bind positively charged peptides refers to ion exchange chromatography, where the charge of the molecules is the basis of separation. Employing dialysis to remove excess salts is a separation based on diffusion through a semi-permeable membrane, rather than a specific affinity interaction between a ligand and a target molecule.

6. In terms of beta-sheet structure, what properties can different sides of the sheet have?

- A. All sides are identical
- B. Different sides can have different properties**
- C. They are all hydrophilic
- D. They are uniform due to hydrogen bonding

The correct choice emphasizes that different sides of a beta-sheet can exhibit varying properties based on the amino acid sequence and their side-chain characteristics. Beta-sheets are formed by hydrogen bonds between the backbone amides in one strand and carbonyl groups in another, leading to a stable structure that can have diverse side chain interactions. The amino acids that compose the beta-sheet contribute to its surface properties—some may have hydrophobic side chains that allow interaction with lipid environments, while others may possess polar or charged side chains that favor interactions with the aqueous environment. This variation means that one side of the sheet could be hydrophobic, promoting interactions with other nonpolar molecules, while the opposite side may be more hydrophilic, interacting favorably with the surrounding water or cellular environment. Such differences are crucial for the protein's overall function and stability in various cellular contexts. Consequently, the ability of beta-sheets to have differing properties on their sides allows proteins to adopt specific three-dimensional structures that facilitate their function in biological systems.

7. What is FRET (Fluorescence/Forster Resonance Energy Transfer) primarily used for?

- A. To measure pH changes in solutions**
- B. To transfer energy from a donor fluorophore to an acceptor fluorophore in close proximity**
- C. To isolate specific proteins from a mixture**
- D. To enhance the intensity of fluorescent tags**

FRET, or Forster Resonance Energy Transfer, is primarily utilized to study interactions between molecular entities at very short ranges, typically within 1-10 nanometers of each other. The fundamental principle behind FRET is the non-radiative energy transfer that occurs when a donor fluorophore, when excited, can transfer its energy to a nearby acceptor fluorophore if they are in close proximity. This energy transfer is highly dependent on the distance between the two fluorophores and the overlap between the emission spectrum of the donor and the absorption spectrum of the acceptor. When the donor is excited by a specific wavelength of light, if an acceptor fluorophore is within the right distance and orientation, some of the excited state energy from the donor can be transferred, leading to emission from the acceptor. This results in a measurable change in fluorescence intensity that can be quantitatively analyzed to infer the dynamics of biomolecular interactions, conformational changes, or even the localization of molecules within biological systems. This unique ability to monitor interactions at the molecular level makes FRET an invaluable tool in biochemistry and cell biology research, particularly for understanding protein-protein interactions, studying conformational changes in proteins or nucleic acids, and investigating live-cell dynamics

8. How do hydrophilic groups interact with water to promote solubility?

- A. They repel water molecules**
- B. They form strong bonds with other hydrophilic groups**
- C. They maximize the number of interactions with water**
- D. They cause water to evaporate quickly**

Hydrophilic groups interact with water primarily through the formation of favorable interactions that enhance solubility. These groups typically contain polar or charged functional groups, allowing them to form hydrogen bonds with water molecules. When hydrophilic groups are present in a substance, they maximize the number of interactions with water, which stabilizes the solute in solution and promotes solubility. The ability of hydrophilic groups to form hydrogen bonds with water helps to disrupt the hydrogen-bonding network that exists in the liquid state of water, thus favoring solvation. This strong interaction between hydrophilic groups and water molecules diminishes the energy barrier for dissolving, which explains why compounds with a significant number of hydrophilic groups are often soluble in water. Consequently, the solubility of a substance in water is largely determined by the extent of its interactions with water, highlighting the importance of maximizing these interactions.

9. What is a zymogen?

- A. An active enzyme that functions immediately
- B. An inactive enzyme precursor**
- C. A type of coenzyme
- D. A degraded form of an enzyme

A zymogen is indeed an inactive enzyme precursor that requires a biochemical change for it to become an active enzyme. This transformation usually involves the cleavage of specific peptide bonds within the zymogen molecule, which results in a conformational change that activates the enzyme. For example, many digestive enzymes, such as pepsinogen, are secreted as zymogens to prevent them from digesting proteins in the cells that produce them. Once they reach the appropriate site in the digestive tract, they are activated into their enzymatically active forms. This controlled activation mechanism is crucial for maintaining cellular integrity and ensuring that enzymes function only when and where needed. In this context, other options do not accurately describe a zymogen. Active enzymes that function immediately are not zymogens, while coenzymes are auxiliary molecules that assist enzymes rather than being precursors to them. Lastly, a degraded form of an enzyme refers to a breakdown product rather than an inactive precursor subjected to activation.

10. What is the main structural component of cell membranes?

- A. Triacylglycerides
- B. Phospholipids**
- C. Cholesterol
- D. Glycolipids

Phospholipids are indeed the main structural component of cell membranes. They are amphipathic molecules, meaning they possess both a hydrophilic (water-attracting) head and hydrophobic (water-repelling) tails. This unique structure allows phospholipids to spontaneously arrange themselves into a bilayer when in an aqueous environment, with the hydrophilic heads facing outward towards the water and the hydrophobic tails facing inward, away from the water. This bilayer structure is fundamental to the formation of cell membranes, providing a semi-permeable barrier that separates the internal environment of the cell from the external surroundings. The fluid mosaic model describes this arrangement, where phospholipids create a dynamic and flexible barrier that can accommodate proteins, carbohydrates, and cholesterol embedded within or attached to the membrane. While triacylglycerides primarily function as energy storage molecules and play a role in lipid metabolism, they are not integral to membrane structure. Cholesterol contributes to membrane fluidity and stability but does not form the primary structural framework. Glycolipids, although important for cell recognition and signaling, also do not constitute the main structural component of membranes but rather serve supportive roles associated with the bilayer.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://uoft-bch210h1midterm.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE