

University of Central Florida (UCF) BSC2010C Biology I Practice Exam 3 (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What type of division occurs during meiosis II?**
 - A. Reduction division**
 - B. Equational division**
 - C. Binary fission**
 - D. Clonal division**

- 2. Which of the following accurately describes a diploid cell?**
 - A. It contains only one set of chromosomes**
 - B. It contains two sets of chromosomes**
 - C. It is produced by meiosis**
 - D. It is a type of sex cell**

- 3. Which phase is often referred to as an escape hatch for cells?**
 - A. G1 phase**
 - B. G2 phase**
 - C. G0 phase**
 - D. M phase**

- 4. Which process is characterized by damage, poisons, starvation, or hypoxia leading to cell death?**
 - A. Apoptosis**
 - B. Necrosis**
 - C. Mitotic catastrophe**
 - D. Cell cycle arrest**

- 5. What characterizes eukaryotic cells as opposed to prokaryotic cells?**
 - A. No cell walls**
 - B. Lack membrane-bound organelles**
 - C. Presence of a nucleus**
 - D. Smaller cell size**

6. During which phase do chromosomes align at the metaphase plate?

- A. Prophase**
- B. Metaphase**
- C. Anaphase**
- D. Telophase**

7. What is cytokinesis?

- A. The process of replicating DNA before cell division**
- B. The division of cytoplasm resulting in two daughter cells**
- C. The fusion of two gametes to form a zygote**
- D. The separation of sister chromatids during mitosis**

8. Which regulators do not apply to cancer cells?

- A. Density dependence and apoptosis**
- B. Anchorage dependence and density dependence**
- C. Apoptosis and cell cycle checkpoints**
- D. All of the above**

9. What is true about the state of chromosomes in gametes?

- A. They are in pairs**
- B. They are diploid**
- C. They are haploid**
- D. They have two sets of homologues**

10. What is the term for a cell with a half set of chromosomes?

- A. Diploid cell**
- B. Somatic cell**
- C. Haploid cell**
- D. Monoploid cell**

Answers

SAMPLE

1. B
2. B
3. C
4. B
5. C
6. B
7. B
8. B
9. C
10. C

SAMPLE

Explanations

SAMPLE

1. What type of division occurs during meiosis II?

- A. Reduction division**
- B. Equational division**
- C. Binary fission**
- D. Clonal division**

During meiosis II, the type of division that occurs is known as equational division. This phase is similar to mitosis, where the sister chromatids are separated and distributed into four haploid daughter cells. Unlike meiosis I, which is a reduction division that halves the chromosome number from diploid to haploid, meiosis II maintains the haploid number while separating the duplicated chromosomes. Equational division signifies that the genetic content is equally divided among the daughter cells without changing the chromosome number, distinguishing it from reduction division, which reduces the genetic material. Hence, during meiosis II, the focus is on the separation of the sister chromatids, leading to genetic diversity among the resultant gametes, a crucial aspect of sexual reproduction.

2. Which of the following accurately describes a diploid cell?

- A. It contains only one set of chromosomes**
- B. It contains two sets of chromosomes**
- C. It is produced by meiosis**
- D. It is a type of sex cell**

A diploid cell is characterized by containing two complete sets of chromosomes, one inherited from each parent. In humans and most other organisms, diploid cells are designated as having a chromosome number represented as $2n$, where "n" represents the number of unique chromosomes. For instance, in humans, the diploid number is 46, reflecting the presence of two sets of 23 chromosomes. This dual set of chromosomes is crucial for sexual reproduction, as it ensures that when gametes (which are haploid cells) fuse during fertilization, the resulting zygote will once again have a complete diploid set. Thus, understanding diploidy is essential for grasping basic genetic principles, particularly those related to inheritance, development, and cell division processes like mitosis. The other options provided do not accurately describe a diploid cell, highlighting the distinction between diploid and haploid cell types as well as the mechanisms of cell production.

3. Which phase is often referred to as an escape hatch for cells?

- A. G1 phase**
- B. G2 phase**
- C. G0 phase**
- D. M phase**

The G0 phase is often referred to as an escape hatch for cells because it is a state where cells exit the active cell cycle and enter a quiescent or resting state. During this phase, the cells are not actively dividing or preparing to divide. Instead, they take a break from proliferation and can perform their specialized functions without the pressure of cell division. This allows cells to conserve energy and resources, and it also provides an opportunity for them to avoid uncontrolled division, which can lead to issues such as cancer. Cells enter the G0 phase from the G1 phase and can remain in this state for extended periods. Some cells, like neurons and certain immune cells, remain in this phase for the long term, while others can re-enter the cell cycle under certain conditions, such as during tissue repair or regeneration. This characteristic of the G0 phase as a reversible state or a "rest stop" in the cell cycle contributes to its description as an escape hatch.

4. Which process is characterized by damage, poisons, starvation, or hypoxia leading to cell death?

- A. Apoptosis**
- B. Necrosis**
- C. Mitotic catastrophe**
- D. Cell cycle arrest**

The process characterized by damage, poisons, starvation, or hypoxia leading to cell death is necrosis. Necrosis occurs when cells experience severe damage due to environmental factors such as toxins, lack of nutrients, or insufficient oxygen. This form of cell death is typically uncontrolled and results in the release of cellular contents into the surrounding tissue, often causing inflammation and further damage to nearby cells. In contrast, apoptosis is a form of programmed cell death that is usually a controlled and regulated process, serving to eliminate damaged or unneeded cells without causing an inflammatory response. Mitotic catastrophe refers to a failure of cell division that results in cell death, often as a consequence of genotoxic stress, and cell cycle arrest is a mechanism that prevents cells from progressing through the cell cycle in response to damage, allowing for repair rather than immediate death. These processes differ fundamentally from necrosis in their triggers, mechanisms, and consequences.

5. What characterizes eukaryotic cells as opposed to prokaryotic cells?

- A. No cell walls**
- B. Lack membrane-bound organelles**
- C. Presence of a nucleus**
- D. Smaller cell size**

Eukaryotic cells are characterized primarily by the presence of a nucleus, which is a membrane-bound organelle that houses the cell's genetic material. This structural distinction is a fundamental difference between eukaryotes and prokaryotes. In prokaryotic cells, the genetic material is not contained within a nucleus but instead resides in a region called the nucleoid, which is not membrane-bound. The presence of a nucleus allows for more complex regulation of gene expression and a more organized replication process during cell division. Additionally, the compartmentalization of cellular processes within different organelles in eukaryotic cells enables higher levels of complexity and specialization compared to prokaryotic cells. While other characteristics, such as cell size and the presence of cell walls, do differ between prokaryotic and eukaryotic cells, these differences do not define eukaryotes in the same fundamental way that the presence of a nucleus does. Hence, the defining feature of eukaryotic cells is their nucleus, which distinguishes them from prokaryotic cells.

6. During which phase do chromosomes align at the metaphase plate?

- A. Prophase**
- B. Metaphase**
- C. Anaphase**
- D. Telophase**

The correct answer is indeed the phase where chromosomes align at the metaphase plate, which is during metaphase. In this stage of mitosis or meiosis, the spindle apparatus is fully developed, and chromosomes, which have already been replicated and condensed, line up along the equatorial plane of the cell known as the metaphase plate. This alignment is crucial because it ensures that each daughter cell will receive an identical set of chromosomes during the subsequent separation in anaphase. The precise arrangement of chromosomes along this plate is facilitated by the microtubules of the spindle fibers that connect to the kinetochores on the chromosomes. This organized alignment is a key hallmark of metaphase and is essential for the accuracy of cell division.

7. What is cytokinesis?

- A. The process of replicating DNA before cell division
- B. The division of cytoplasm resulting in two daughter cells**
- C. The fusion of two gametes to form a zygote
- D. The separation of sister chromatids during mitosis

Cytokinesis is defined as the division of the cytoplasm, a critical process that occurs at the end of cell division (specifically, after mitosis or meiosis) to create two distinct daughter cells. During cytokinesis, the cell's cytoplasm is split in such a way that each daughter cell receives the necessary organelles and a portion of the cytoplasm, ensuring that they can function independently. This process often involves the formation of a cleavage furrow in animal cells or a cell plate in plant cells, depending on the type of organism. Understanding cytokinesis is crucial in the broader context of the cell cycle, as it marks the final step in cellular reproduction, allowing for growth, tissue repair, and asexual reproduction in various organisms. The other descriptions provided in the other options refer to different cellular processes that do not accurately define cytokinesis.

8. Which regulators do not apply to cancer cells?

- A. Density dependence and apoptosis
- B. Anchorage dependence and density dependence**
- C. Apoptosis and cell cycle checkpoints
- D. All of the above

Cancer cells are characterized by their ability to grow and divide uncontrollably, often disregarding the normal regulatory mechanisms that govern cell behavior. Anchorage dependence refers to the requirement for cells to be attached to a solid surface to grow and proliferate. Normal cells require this attachment to regulate their life cycle properly, but cancer cells can grow without being anchored, allowing them to invade other tissues and spread throughout the body. Density dependence is another regulatory mechanism that prevents overcrowding of cells. In normal tissue, when cells become too densely packed, growth is inhibited. This regulation is lost in cancer cells, which continue to divide regardless of cell density, leading to tumor formation. Apoptosis, or programmed cell death, is a critical process that helps maintain healthy tissue by removing damaged or unnecessary cells. Many cancer cells develop mechanisms to evade apoptosis, allowing them to survive and proliferate despite genetic damage that would normally trigger cell death. Cell cycle checkpoints are regulatory pathways that ensure the proper progression of the cell cycle. They monitor the DNA for damage and ensure that cells only proceed to the next phase of the cycle when they are ready. Cancer cells often have mutations that impair these checkpoints, leading to unchecked cell division. Considering these aspects, it is evident that both anchorage dependence and density dependence do not apply to cancer cells.

9. What is true about the state of chromosomes in gametes?

- A. They are in pairs
- B. They are diploid
- C. They are haploid**
- D. They have two sets of homologues

Gametes, which are the reproductive cells (sperm and egg), are characterized by having a haploid number of chromosomes. This means that they contain only one set of chromosomes, totaling half the number found in somatic (body) cells. In humans, for instance, somatic cells are diploid with 46 chromosomes, while gametes each have 23 chromosomes. The haploid state is essential for sexual reproduction because it ensures that when fertilization occurs, the resulting zygote will have the correct diploid number of chromosomes, combining genetic material from both parents. This mechanism maintains the species' chromosome number across generations through meiosis, which is the process by which gametes are produced. In contrast to gametes, somatic cells contain pairs of chromosomes and are diploid, comprising two sets of homologous chromosome pairs. This difference underscores the unique role of gametes in reproduction versus the commitment to progression through the life cycle of the organism.

10. What is the term for a cell with a half set of chromosomes?

- A. Diploid cell
- B. Somatic cell
- C. Haploid cell**
- D. Monoploid cell

A cell with a half set of chromosomes is referred to as a haploid cell. In humans and many other organisms, diploid cells contain two complete sets of chromosomes, one inherited from each parent. Haploid cells, on the other hand, have only one set of chromosomes and are typically found in gametes, which are the reproductive cells (sperm and eggs). This reduction in chromosome number is crucial for sexual reproduction; when two haploid gametes fuse during fertilization, they restore the diploid chromosome number in the resulting zygote. The terms associated with diploid and somatic cells refer to different structures and functions. Diploid cells encompass all somatic cells, which are the body cells not involved in reproduction. A monoploid is less commonly used and often refers specifically to organisms or life stages that consistently have a single chromosome set, which can create confusion in biological contexts. Therefore, haploid is the precise term to indicate cells with a single set of chromosomes.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ucf-bsc2010c-exam3.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE