

Union Pacific Air Brakes Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. Can the "brake release inspection" for a Class I air brake test be performed while the train is departing the terminal?**
 - A. Yes, at any speed**
 - B. No, it must be done at a complete stop**
 - C. Yes, but not exceeding 10 MPH**
 - D. Only if approved by the inspector**
- 2. What is the maximum number of consecutive cars with cutout air brake devices that can be placed together in a train?**
 - A. No more than one car**
 - B. No more than two cars**
 - C. No more than three cars**
 - D. No maximum limit**
- 3. Which government agency is responsible for regulating the inspection and testing of brake equipment on railroad locomotives and cars?**
 - A. Federal Aviation Administration (FAA)**
 - B. Federal Railroad Administration (FRA)**
 - C. Occupational Safety and Health Administration (OSHA)**
 - D. National Transportation Safety Board (NTSB)**
- 4. If defective air brake devices cannot be corrected, whom must you notify?**
 - A. The station master**
 - B. Train Dispatcher and Mechanical Help Desk**
 - C. Other train crews**
 - D. The maintenance team**
- 5. What is a secondary securement procedure?**
 - A. A method for documenting train status**
 - B. A procedure used during maintenance checks**
 - C. A method for securing detached train parts**
 - D. A safety protocol for crew members**

6. Which angle cock is closed when testing the emergency application on an EOT?

- A. Angle cock at the first car**
- B. Angle cock ahead of the last car**
- C. Angle cock at the middle car**
- D. Angle cock beside the engineer**

7. What can cause a car to be considered for a safety inspection?

- A. External aesthetics**
- B. Leaking hazardous materials**
- C. Brake color fading**
- D. Length of the train**

8. How accurate must locomotive speed indicators be within?

- A. ± 2 MPH at all speeds**
- B. ± 3 MPH at speeds between 10 and 30 MPH**
- C. ± 4 MPH at speeds above 30 MPH**
- D. ± 1 MPH at all speeds**

9. What three methods are used to determine the air pressure at the rear of a train?

- A. Manual gauge and pressure chart**
- B. Accurate gauge, E.O.T., and a distributed power locomotive**
- C. Wireless pressure monitors only**
- D. Backup cameras and gauges**

10. What is the primary purpose of air brakes in locomotives?

- A. To provide reliable stopping power for trains**
- B. To increase the speed of the train**
- C. To control the engine temperature**
- D. To assist with fuel efficiency**

Answers

SAMPLE

1. C
2. B
3. B
4. B
5. C
6. B
7. B
8. B
9. B
10. A

SAMPLE

Explanations

SAMPLE

- 1. Can the "brake release inspection" for a Class I air brake test be performed while the train is departing the terminal?**
 - A. Yes, at any speed**
 - B. No, it must be done at a complete stop**
 - C. Yes, but not exceeding 10 MPH**
 - D. Only if approved by the inspector**

In a Class I air brake test, the brake release inspection is crucial for ensuring that the train's braking system is functioning properly before departing. Conducting this inspection while the train is still moving would not provide the accurate assessment needed to verify that the brakes are fully released and operating correctly. It is essential to perform this inspection under controlled conditions. The correct choice indicates that the brake release inspection can be done while the train is departing but not exceeding a speed of 10 MPH. This speed limit ensures that the inspection can be performed safely and effectively, allowing for the necessary checks without compromising the ability to assess how the brakes respond. It strikes a balance between operational efficiency and safety, recognizing that while the inspection can be conducted in motion, any higher speeds could introduce complications and risks to accuracy. This understanding highlights the importance of maintaining safety protocols, even when operational demands necessitate a quick departure.

- 2. What is the maximum number of consecutive cars with cutout air brake devices that can be placed together in a train?**
 - A. No more than one car**
 - B. No more than two cars**
 - C. No more than three cars**
 - D. No maximum limit**

The maximum number of consecutive cars with cutout air brake devices that can be placed together in a train is limited to two cars. This limitation is based on safety regulations that ensure effective braking across the entire train. Having more than two consecutive cars with cutout devices could adversely affect the braking capabilities of the train, potentially leading to insufficient braking force in the event of an emergency. By restricting the number of cars with cutout devices to two, the integrity of the train's overall braking system is maintained, ensuring that adequate control can be exercised to safely stop the train when necessary. Regulatory guidelines and safety standards emphasize the importance of maintaining function and reliability in air brake systems, which is why the limitation is set at two cars.

3. Which government agency is responsible for regulating the inspection and testing of brake equipment on railroad locomotives and cars?

- A. Federal Aviation Administration (FAA)**
- B. Federal Railroad Administration (FRA)**
- C. Occupational Safety and Health Administration (OSHA)**
- D. National Transportation Safety Board (NTSB)**

The Federal Railroad Administration (FRA) is the agency responsible for regulating the inspection and testing of brake equipment on railroad locomotives and cars. The FRA's mission includes ensuring the safety of railroads and the effectiveness of equipment, which encompasses the standards and protocols needed for the proper functioning of braking systems. The FRA sets regulations that outline the technical requirements for braking systems and oversees compliance through inspections and testing. This focus on rail safety makes the FRA uniquely qualified to handle aspects related to brake inspection and testing, facilitating safe transportation practices across the rail industry. Other agencies mentioned, such as the FAA, OSHA, and NTSB, have different jurisdictions and responsibilities; for instance, the FAA is primarily concerned with aviation safety, OSHA addresses workplace safety across various industries, and the NTSB investigates accidents rather than regulating operational standards.

4. If defective air brake devices cannot be corrected, whom must you notify?

- A. The station master**
- B. Train Dispatcher and Mechanical Help Desk**
- C. Other train crews**
- D. The maintenance team**

When defective air brake devices are identified and cannot be corrected, it is crucial to notify the Train Dispatcher and the Mechanical Help Desk. This is primarily because the Train Dispatcher oversees the safe movement of trains in the area and needs to be informed about any defects that could affect train safety and operations. Additionally, the Mechanical Help Desk is responsible for coordinating repairs and ensuring that necessary actions are taken for maintenance and safety checks of the train's equipment. The involvement of both these roles ensures a prompt response to the issue, which is vital for maintaining safe rail operations. This process allows for an accurate assessment of the situation, dispatching maintenance personnel if needed, and informing all relevant parties to prevent any accidents or incidents arising from the defective equipment.

5. What is a secondary securement procedure?

- A. A method for documenting train status
- B. A procedure used during maintenance checks
- C. A method for securing detached train parts**
- D. A safety protocol for crew members

A secondary securement procedure specifically refers to measures put in place to secure detached train parts. When train components, such as cars or cargo, become disconnected or otherwise separated, it is crucial to ensure that these parts do not pose a hazard. The procedure involves additional steps to firmly secure these components to prevent rolling or shifting, especially in scenarios where gravity or movement could lead to accidents. This is instrumental for maintaining safety on the tracks, ensuring that all parts of the train system remain stable and under control, thus preventing potential accidents or injuries. In contrast, other options pertain to administrative or safety procedures that, while important for overall operations, do not focus specifically on the physical security of detached parts.

6. Which angle cock is closed when testing the emergency application on an EOT?

- A. Angle cock at the first car
- B. Angle cock ahead of the last car**
- C. Angle cock at the middle car
- D. Angle cock beside the engineer

When testing the emergency application on an End-of-Train (EOT) device, it is crucial to understand the function of the angle cock that is closed. Closing the angle cock ahead of the last car effectively isolates that section of the brake system, ensuring that the emergency application process is conducted under controlled conditions without interference from the rest of the train. This allows for a clear assessment of the EOT's functionality and its ability to properly communicate emergency conditions to the entire train. Maintaining the integrity of the test means preventing any variables that could arise from other cars in the train affecting the pressure readings or reactions during the emergency application. By closing the angle cock ahead of the last car, it ensures that only the conditions from that point backward are evaluated, allowing for a reliable test of the EOT system's performance during emergencies.

7. What can cause a car to be considered for a safety inspection?

- A. External aesthetics
- B. Leaking hazardous materials**
- C. Brake color fading
- D. Length of the train

A car can be considered for a safety inspection if it is leaking hazardous materials, as this indicates a significant safety concern. Leaks can pose risks not only to the train's operation but also to the environment and public safety. The presence of hazardous materials suggests that there could be a breach in the integrity of the car, leading to potential contamination or fire hazards, which must be addressed immediately to comply with safety regulations and ensure safe transportation. In the context of air brakes and overall train safety, inspections focus on functionality and safety compliance rather than aesthetic concerns or less critical factors like brake color fading or the length of the train. Hence, any signs of hazardous leaks trigger an immediate need for inspection to assess and rectify the issue before further operation.

8. How accurate must locomotive speed indicators be within?

- A. ± 2 MPH at all speeds
- B. ± 3 MPH at speeds between 10 and 30 MPH**
- C. ± 4 MPH at speeds above 30 MPH
- D. ± 1 MPH at all speeds

Locomotive speed indicators are required to maintain a specific level of accuracy to ensure safe operation. The correct response highlights that these indicators must be accurate within ± 3 MPH at speeds between 10 and 30 MPH. This range is particularly important because it represents a critical operational speed where the performance of the locomotive can significantly impact safety and efficiency. At lower speeds, such as those below 10 MPH or at a standstill, the accuracy tolerance can be less stringent, as the risk associated with small discrepancies in speed measurements is lower. Conversely, as the speed increases above 30 MPH, the acceptable error range becomes ± 4 MPH, acknowledging that the factors involved in speed measurement can become slightly less precise at higher velocities while still maintaining safety standards. In summary, the accuracy requirement of ± 3 MPH for speeds between 10 and 30 MPH reflects a careful balance between operational safety and the realities of measuring speed in dynamic conditions. It ensures that operators receive a reliable indication of speed critical for controlling the locomotive effectively.

9. What three methods are used to determine the air pressure at the rear of a train?

- A. Manual gauge and pressure chart**
- B. Accurate gauge, E.O.T., and a distributed power locomotive**
- C. Wireless pressure monitors only**
- D. Backup cameras and gauges**

The correct answer involves three methods that provide an accurate assessment of air pressure at the rear of a train. Using an accurate gauge is essential, as it directly measures the air pressure within the brake line. This allows for immediate and reliable feedback on the braking system's status. The End-of-Train (E.O.T.) device plays a critical role as well, as it is equipped with sensors that monitor the pressure in the brake line and transmit this information back to the locomotive. This communication ensures that the engineer is aware of the conditions at the rear of the train, which might differ from those at the front due to potential pressure loss or leaks. Finally, having a distributed power locomotive expands the control and monitoring capabilities of the train. These locomotives help manage the air brakes more effectively throughout the train by providing additional data and control from locations between the front and rear of the train. Together, these three methods ensure a comprehensive understanding of air pressure at the rear, thus enhancing the safety and efficiency of train operations.

10. What is the primary purpose of air brakes in locomotives?

- A. To provide reliable stopping power for trains**
- B. To increase the speed of the train**
- C. To control the engine temperature**
- D. To assist with fuel efficiency**

The primary purpose of air brakes in locomotives is to provide reliable stopping power for trains. Air brakes utilize compressed air to create pressure that activates the braking system, allowing for controlled and effective stopping of trains, which is critical for safety. This system enables engineers to manage the speed and halting of heavy locomotives and freight cars, which possess significant momentum and mass. Given the size and weight of trains, a dependable braking system is essential to prevent accidents and ensure smooth operation, particularly when traversing hills or approaching stations. Other options, such as increasing speed, controlling engine temperature, or assisting with fuel efficiency, do not align with the fundamental function of air brakes. While those aspects are important in locomotive operation, they do not pertain specifically to the role of the air brake system.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://unionpacificairbrakes.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE