

TREEO Drinking Water Treatment C Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What is the Secondary MCL for copper?**
 - A. 0.1 mg/l
 - B. 0.5 mg/l
 - C. 1.0 mg/l
 - D. 1.5 mg/l
- 2. What pressure range is required to force brackish water through a reverse osmosis membrane?**
 - A. 100-200 psi
 - B. 200-500 psi
 - C. 500-700 psi
 - D. 700-1000 psi
- 3. What is the correct sequence of operation for an ion exchange softener?**
 - A. Backwash, Rinse, Service, Brine
 - B. Service, Backwash, Brine, Rinse
 - C. Rinse, Service, Brine, Backwash
 - D. Brine, Service, Backwash, Rinse
- 4. What type of problems can water fall aeration devices cause?**
 - A. Decrease in water clarity
 - B. Encourage biological growth
 - C. Increase in temperature of water
 - D. Higher operational costs
- 5. Which method is used for Tier 3 public notification of a primary contaminant violation?**
 - A. Social media announcement
 - B. Mail or direct delivery and publication in a daily newspaper
 - C. Television broadcast only
 - D. Email notification to subscribers

6. During which process is detention time not as critical and just needs to be long enough for chemical processes?

- A. Coagulation**
- B. Flocculation**
- C. Filtration**
- D. Disinfection**

7. Metallic corrosion and potable water are primarily a result of which type of corrosion?

- A. Galvanic corrosion**
- B. Oxidation**
- C. Electrochemical corrosion**
- D. Corrosion fatigue**

8. Which type of flocculation is most affected by low alum dosage?

- A. Effective flocculation**
- B. Cohesive flocculation**
- C. Surfactant flocculation**
- D. Bacterial flocculation**

9. What does an increase in tubercle lead to in terms of pipe functionality?

- A. Improved water flow**
- B. Increased flow resistance**
- C. Reduced corrosion**
- D. Improved durability**

10. What range of mg/l is water considered hard?

- A. 100-150 mg/l**
- B. 150-300 mg/l**
- C. 300-500 mg/l**
- D. Over 500 mg/l**

Answers

SAMPLE

1. C
2. B
3. B
4. B
5. B
6. A
7. C
8. A
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What is the Secondary MCL for copper?

- A. 0.1 mg/l
- B. 0.5 mg/l
- C. 1.0 mg/l**
- D. 1.5 mg/l

The Secondary Maximum Contaminant Level (MCL) for copper is established primarily to address aesthetic concerns, such as taste and odor, rather than health risks. The correct value of 1.0 mg/l reflects the level set by the EPA for copper. This guideline helps to ensure that the water received by consumers is not only safe but also meets their quality preferences in terms of taste. Copper can naturally occur in water and also may come from plumbing systems, thus monitoring its concentration is crucial. A level above the Secondary MCL could lead to noticeable metallic tastes in water, prompting public complaints. Keeping the concentration at or below this threshold helps maintain water quality while ensuring that it remains palatable for consumers.

2. What pressure range is required to force brackish water through a reverse osmosis membrane?

- A. 100-200 psi
- B. 200-500 psi**
- C. 500-700 psi
- D. 700-1000 psi

The appropriate pressure range required to force brackish water through a reverse osmosis membrane typically falls between 200 and 500 psi. This is due to the need for sufficient pressure to overcome the osmotic pressure of the brackish water, which is a mixture of salt water and fresh water. Brackish water usually has a total dissolved solids (TDS) concentration that is lower than seawater but higher than freshwater, necessitating higher pressures than those used in treating seawater or freshwater. The efficiency of the reverse osmosis process is significantly influenced by this pressure; higher pressures are more effective at pushing water through the membrane while assisting in separating the salts and other impurities. The pressure values provided in this range allow for effective operation of the reverse osmosis system without risking damage to the membrane or resulting in excessive energy costs associated with too high of a pressure. Thus, water treatment facilities aiming to process brackish water typically design their systems to operate within this specified pressure range for optimal performance and efficiency.

3. What is the correct sequence of operation for an ion exchange softener?

- A. Backwash, Rinse, Service, Brine
- B. Service, Backwash, Brine, Rinse**
- C. Rinse, Service, Brine, Backwash
- D. Brine, Service, Backwash, Rinse

The correct sequence of operation for an ion exchange softener is Service, Backwash, Brine, and Rinse. In the context of how an ion exchange softener functions, the "Service" phase is when water is treated to reduce hardness by exchanging calcium and magnesium ions for sodium ions. This stage is essential as it directly relates to the softening of water that users typically experience. Following the service phase, "Backwash" is conducted to clean the resin bed and remove any accumulated particles or contaminants. This step ensures that the system operates efficiently and has sufficient flow rates during the service cycle. The "Brine" phase occurs next, where a strong salt solution is introduced into the system. This salt solution replenishes the resin with sodium ions and removes the captured hardness ions (calcium and magnesium) from the resin. This step is crucial as it prepares the resin for the next service cycle. Finally, the "Rinse" phase involves flushing the system with clean water to remove any residual brine before the system returns to normal operation. This ensures that any excess salt is cleared out, preventing corrosion and other issues for downstream components. This sequence is critical for maintaining the effectiveness and longevity of the ion exchange softener system, ensuring the

4. What type of problems can water fall aeration devices cause?

- A. Decrease in water clarity
- B. Encourage biological growth**
- C. Increase in temperature of water
- D. Higher operational costs

Water fall aeration devices can encourage biological growth for several reasons. These devices are designed to introduce air into water, which enhances the oxygen levels in the water. The increased oxygen availability can create a more favorable environment for various microorganisms, particularly beneficial bacteria and algae. When conditions are optimal, this boost in dissolved oxygen encourages the growth of these biological organisms. In many treatment scenarios, biological growth can be advantageous, such as in biological filtration processes or enhancing the activity of bacteria that help in decomposing organic matter. However, in situations where uncontrolled growth occurs, it may lead to issues such as excess biomass that could clog filters or alter the water quality. The other choices represent potential issues associated with water systems, but they do not directly relate to the primary function and impact of water fall aeration devices as effectively as the increase in biological growth does. It's essential to monitor and manage the conditions created by these devices to ensure they do not lead to undesirable biological proliferation in water bodies.

5. Which method is used for Tier 3 public notification of a primary contaminant violation?

- A. Social media announcement**
- B. Mail or direct delivery and publication in a daily newspaper**
- C. Television broadcast only**
- D. Email notification to subscribers**

The use of mail or direct delivery, along with publication in a daily newspaper, is the standardized method for Tier 3 public notification regarding primary contaminant violations. This approach ensures that the information reaches a broad audience, including those who may not have access to digital platforms. Publications in daily newspapers provide a tangible, official means of communication that is widely recognized and can reach diverse demographics, while direct mail guarantees that households receive the notification directly. This combined approach meets regulatory requirements for transparency and public awareness, allowing for an effective means of informing the community about serious water quality issues. Other methods listed, such as social media or email notifications, do not provide the same level of guaranteed reach and may exclude individuals who rely on traditional media for important information. Television broadcasts, while possibly effective, may not have the same regulatory recognition or comprehensive reach as the combination of mail and newspaper publication.

6. During which process is detention time not as critical and just needs to be long enough for chemical processes?

- A. Coagulation**
- B. Flocculation**
- C. Filtration**
- D. Disinfection**

Detention time refers to the amount of time water spends in a treatment process, which is an important factor for ensuring effective treatment and chemical reactions. In the context of coagulation, this process involves the addition of chemicals (coagulants) that aid in the aggregation of small particles into larger particles, or flocs. The primary goal during coagulation is to disrupt the stable state of suspended particles, allowing them to bond together. While detention time is important, it is less critical in the coagulation phase compared to subsequent processes like flocculation, where sufficient time must be allowed for the clumping and settling of these particles. In coagulation, the reaction can begin almost immediately after the coagulant is added. Thus, as long as there is enough time for the chemicals to perform their intended reactions, the exact detention time is not as crucial. This is why this option is seen as the correct answer in the context of the question. In contrast, other processes, such as flocculation and filtration, require a more precise detention time to ensure that flocs have ample opportunity to form and settle appropriately for optimal water quality before moving onto the next phases of treatment. Disinfection, while also dependent on specific factors such as contact time and

7. Metallic corrosion and potable water are primarily a result of which type of corrosion?

- A. Galvanic corrosion**
- B. Oxidation**
- C. Electrochemical corrosion**
- D. Corrosion fatigue**

The correct response is electrochemical corrosion, as this type of corrosion specifically involves the reactions that occur when metals are in contact with an electrolyte, such as water. In potable water systems, this process can lead to the degradation of metal components as the dissolved oxygen and other ions in the water facilitate the transfer of electrons, leading to the breakdown of metallic materials. Electrochemical corrosion is particularly relevant in drinking water systems because it can occur in various environments, including pipelines and storage tanks. The water's chemistry, temperature, and the presence of bacteria can all influence the rate of electrochemical reactions, potentially resulting in the leaching of metals into the water supply, which is a health concern. Galvanic corrosion, while related to the presence of different metals in contact, does not primarily relate to the nature of potable water systems in the same way that electrochemical processes do. Oxidation is a broader term that encompasses a range of chemical reactions, but in the context of corrosion, it is the specific electrochemical reactions that lead to metal loss in water. Corrosion fatigue refers to a specific failure mechanism in metals that occurs due to cyclic loading and is not directly related to the corrosion processes occurring in drinking water systems.

8. Which type of flocculation is most affected by low alum dosage?

- A. Effective flocculation**
- B. Cohesive flocculation**
- C. Surfactant flocculation**
- D. Bacterial flocculation**

Effective flocculation refers to the ideal scenario where flocculants, such as alum, promote the aggregation of suspended particles in water treatment processes. When the dosage of alum is low, there is insufficient coagulant present to neutralize the charges on particles, leading to a decrease in the ability of these particles to come together and form larger aggregates, or flocs. This deficiency results in ineffective sedimentation and overall poorer water quality as smaller particles remain suspended in the water. In contrast, cohesive flocculation involves particles that are already capable of clumping together without significant assistance from coagulants, while surfactant flocculation relies more on surface-active agents rather than traditional coagulants like alum. Bacterial flocculation often pertains to the aggregation driven by bacteria in wastewater treatment, which functions independently of the alum dosage. Thus, low alum dosage primarily impacts effective flocculation because it directly limits the coagulant's ability to attract and bind particles, ultimately hindering the treatment process's effectiveness.

9. What does an increase in tubercle lead to in terms of pipe functionality?

- A. Improved water flow**
- B. Increased flow resistance**
- C. Reduced corrosion**
- D. Improved durability**

An increase in tuberculation in water pipes leads to increased flow resistance due to the accumulation of layers of corrosion products on the inner surface of pipes. Tubercles are small, often irregularly shaped, protrusions that develop as a result of corrosion processes. As these tubercles build up, they can significantly constrict the internal diameter of the piping system, creating obstacles that impede the flow of water. This increase in flow resistance can cause a variety of operational challenges, such as reduced water pressure, inefficient system performance, and higher energy costs to pump water through the affected pipes. Managing tuberculation is essential for maintaining the functionality and efficiency of the water distribution system, as it directly impacts how well water can flow through the pipes. The other options, such as improved water flow, reduced corrosion, and improved durability are not accurate outcomes of increased tuberculation, as they suggest enhanced functionality rather than the challenges associated with increased resistance to flow.

10. What range of mg/l is water considered hard?

- A. 100-150 mg/l**
- B. 150-300 mg/l**
- C. 300-500 mg/l**
- D. Over 500 mg/l**

Water is classified as hard when it contains significant concentrations of dissolved minerals, primarily calcium and magnesium. The range of 150-300 mg/l indicates moderately hard to hard water. Such levels can impact various aspects of water supply, including scaling in plumbing and appliances, as well as the effectiveness of soaps and detergents. The ranges help water treatment professionals understand water quality and manage systems effectively. Water with hardness levels falling within the range of 150-300 mg/l can lead to noticeable scaling and may require specific treatment solutions to manage hardness. Hardness is typically categorized as follows: soft water contains less than 60 mg/l, moderately hard water falls between 60-120 mg/l, hard water ranges from 120-180 mg/l, and very hard water is anything above 180 mg/l. Understanding these classifications is crucial in water treatment and management, which is why identifying the range encompassing 150-300 mg/l as hard water is essential for meaningful interpretation in the context of drinking water treatment practices.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://treeodrinkingwatertreatmentc.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE