

# The STABLE Program Practice Exam (Sample)

## Study Guide



**Everything you need from our exam experts!**

**Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.**

**ALL RIGHTS RESERVED.**

**No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.**

**Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.**

**SAMPLE**

# Table of Contents

|                                    |           |
|------------------------------------|-----------|
| <b>Copyright</b> .....             | <b>1</b>  |
| <b>Table of Contents</b> .....     | <b>2</b>  |
| <b>Introduction</b> .....          | <b>3</b>  |
| <b>How to Use This Guide</b> ..... | <b>4</b>  |
| <b>Questions</b> .....             | <b>5</b>  |
| <b>Answers</b> .....               | <b>8</b>  |
| <b>Explanations</b> .....          | <b>10</b> |
| <b>Next Steps</b> .....            | <b>16</b> |

SAMPLE

# Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

# How to Use This Guide

**This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:**

## 1. Start with a Diagnostic Review

**Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.**

## 2. Study in Short, Focused Sessions

**Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.**

## 3. Learn from the Explanations

**After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.**

## 4. Track Your Progress

**Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.**

## 5. Simulate the Real Exam

**Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.**

## 6. Repeat and Review

**Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.**

**There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!**

## **Questions**

SAMPLE

- 1. What is the recommended respiratory rate for very low birth weight infants during initial ventilator support?**
  - A. 30-45 breaths per minute**
  - B. 20-40 breaths per minute**
  - C. 40-50 breaths per minute**
  - D. 25-35 breaths per minute**
- 2. What complication can arise with low ionized calcium levels during shock?**
  - A. Decreased myocardial contractility**
  - B. Increased glucose levels**
  - C. Enhanced renal function**
  - D. Improved oxygenation**
- 3. In the management of shock, which medication is specifically indicated for treating severe acidosis?**
  - A. Sodium bicarbonate**
  - B. Dopamine hydrochloride**
  - C. Leukoreduced products**
  - D. Phenylephrine**
- 4. Which of the following is a potential cause of hypoxia?**
  - A. Excessive fluid intake**
  - B. Cardiac failure**
  - C. Low blood pressure**
  - D. Hypoglycemia**
- 5. What oxygen saturation should be targeted when managing a cyanotic infant?**
  - A. At least 85%**
  - B. At least 90%**
  - C. At least 95%**
  - D. At least 98%**

**6. What effect does skin-to-skin contact have on a newborn's heart rate?**

- A. It has no impact**
- B. It may stabilize the heart rate**
- C. It can increase the heart rate substantially**
- D. It makes the heart rate erratic**

**7. What should be added to fluids given via umbilical catheter to prevent clotting?**

- A. 0.1 - 1 unit of heparin per mL of fluid**
- B. 5% dextrose**
- C. Vitamin K**
- D. Lactated Ringer's solution**

**8. What should be done if the UAC/UVC is malpositioned?**

- A. Advance the catheter immediately**
- B. Pull out but do not advance unless sterile**
- C. Leave it in place indefinitely**
- D. Consult a supervisor before taking action**

**9. What is the initial percentage of oxygen that should be administered to a cyanotic infant?**

- A. 15%**
- B. 21%**
- C. 30%**
- D. 50%**

**10. What is the normal range for oxygen saturation (SpO<sub>2</sub>) on room air (RA) in healthy late preterm and term infants by 24 hours of life?**

- A. 90.0% to 93.0%**
- B. 95.6% to 98.8%**
- C. 80.0% to 85.0%**
- D. 98.0% to 100.0%**

## **Answers**

SAMPLE

1. A
2. A
3. A
4. B
5. B
6. B
7. A
8. B
9. B
10. B

SAMPLE

## **Explanations**

SAMPLE

**1. What is the recommended respiratory rate for very low birth weight infants during initial ventilator support?**

- A. 30-45 breaths per minute**
- B. 20-40 breaths per minute**
- C. 40-50 breaths per minute**
- D. 25-35 breaths per minute**

The recommended respiratory rate for very low birth weight infants during initial ventilator support is 30-45 breaths per minute because this range has been established to support adequate ventilation while minimizing the risk of ventilator-induced lung injury. Very low birth weight infants typically have underdeveloped lungs and require careful management to achieve effective gas exchange. The chosen respiratory rate facilitates this while still considering the infant's fragile physiology. This range ensures that there is enough lung volume being ventilated to meet the metabolic demands of the infant without overwhelming the delicate respiratory system. Rates that are too low could result in inadequate ventilation and hypoxia, while rates that are too high may increase the risk of barotrauma and volutrauma. Hence, maintaining the respiratory rate in the 30-45 breaths per minute range is crucial for optimal outcomes in this vulnerable population.

**2. What complication can arise with low ionized calcium levels during shock?**

- A. Decreased myocardial contractility**
- B. Increased glucose levels**
- C. Enhanced renal function**
- D. Improved oxygenation**

Low ionized calcium levels during shock can lead to decreased myocardial contractility. Calcium plays a crucial role in the electrical conduction system of the heart as well as in muscle contraction. When ionized calcium levels drop, the heart's ability to contract effectively is impaired, which can result in reduced cardiac output and overall poor perfusion to vital organs. In the setting of shock, where the body is already struggling to maintain adequate blood flow and oxygen delivery, low calcium levels exacerbate the situation. The heart's myocytes rely on calcium for initiating contraction; thus, without sufficient ionized calcium, the strength and efficiency of heart muscle contractions diminish, leading to an increased risk of heart failure and worsening shock. This physiological principle highlights the importance of monitoring electrolyte levels, especially ionized calcium, in critically ill patients, as it can significantly influence cardiovascular function and overall patient outcomes. The other options do not directly relate to the effects of low ionized calcium in the context of shock and thus are not relevant to this particular physiological concern.

**3. In the management of shock, which medication is specifically indicated for treating severe acidosis?**

- A. Sodium bicarbonate**
- B. Dopamine hydrochloride**
- C. Leukoreduced products**
- D. Phenylephrine**

Sodium bicarbonate is specifically indicated for treating severe acidosis because it directly neutralizes excess acid in the bloodstream, helping to restore normal pH levels. In cases of severe acidosis, particularly metabolic acidosis that may occur in shock states, administering sodium bicarbonate can help mitigate the detrimental effects of acid buildup on the body's physiological functions. It works by providing bicarbonate ions that react with hydrogen ions to form carbonic acid, which is then converted to carbon dioxide and water, facilitating the correction of the acid-base balance. The other choices listed serve different purposes. Dopamine hydrochloride is primarily used as a vasopressor to improve cardiac output and blood flow in shock rather than directly addressing acid-base imbalances. Leukoreduced products refer to blood products that have undergone a filtration process to reduce white blood cells, aimed at decreasing the risk of transfusion reactions rather than treating acidosis. Phenylephrine is a vasoconstrictor used to increase blood pressure but does not address acid-base disturbances. Thus, sodium bicarbonate stands out as the medication specifically indicated for treating severe acidosis in shock management.

**4. Which of the following is a potential cause of hypoxia?**

- A. Excessive fluid intake**
- B. Cardiac failure**
- C. Low blood pressure**
- D. Hypoglycemia**

Hypoxia refers to a condition in which there is inadequate oxygen supply to the tissues. Cardiac failure is a significant potential cause of hypoxia because it impairs the heart's ability to pump blood effectively. When the heart cannot function properly, it results in decreased cardiac output, meaning less oxygen-rich blood is delivered to various organs and tissues. This deficiency can lead to symptoms of hypoxia, as the body's cells require a constant supply of oxygen to function optimally. In contrast, while excessive fluid intake, low blood pressure, and hypoglycemia can have adverse effects on overall health and may lead to other complications, they do not directly result in hypoxia as cardiac failure does. Excessive fluid intake may cause other issues such as fluid overload, and low blood pressure can lead to inadequate perfusion but does not necessarily equate to a systemic lack of oxygen, as hypoglycemia primarily affects glucose levels rather than oxygen delivery.

**5. What oxygen saturation should be targeted when managing a cyanotic infant?**

- A. At least 85%**
- B. At least 90%**
- C. At least 95%**
- D. At least 98%**

When managing a cyanotic infant, the target oxygen saturation should be at least 90%. This target is based on the understanding that infants with cyanotic conditions often have some degree of underlying pulmonary or cardiac issues that affect oxygenation. In the context of cyanotic heart conditions, achieving an oxygen saturation of at least 90% helps to ensure adequate oxygen delivery to tissues while avoiding potential complications that can arise from excessive oxygen levels. This target is considered safe for minimizing the risk of oxygen toxicity, especially in infants with specific cardiac anomalies where the physiological responses to oxygen can be different than in healthy infants. Saturation levels below this target could indicate inadequate oxygenation and may require further intervention, while aiming for too high a saturation can lead to other complications. Therefore, a goal of at least 90% is a balanced approach that provides sufficient oxygenation while considering the unique needs of cyanotic infants.

**6. What effect does skin-to-skin contact have on a newborn's heart rate?**

- A. It has no impact**
- B. It may stabilize the heart rate**
- C. It can increase the heart rate substantially**
- D. It makes the heart rate erratic**

Skin-to-skin contact, also known as kangaroo care, provides numerous physiological benefits for newborns, particularly in the area of heart rate stabilization. This intimate contact between the parent and the newborn promotes a calming effect, which can lead to a decrease in stress and anxiety levels for the infant. When a newborn is placed directly against a caregiver's skin, the body warmth helps to regulate the infant's body temperature, soothing the baby and promoting a more stable heart rate. Research has shown that skin-to-skin contact often results in a more consistent and predictable heart rate, which is essential for the newborn's overall well-being. The comforting presence of the caregiver can also lead to a decrease in the frequency of episodes where the heart rate may fluctuate or become erratic. This stabilization is critical, especially for premature infants or those with health issues, as it can play a significant role in their transition to extrauterine life and can consequently improve outcomes in terms of both immediate and long-term health.

## 7. What should be added to fluids given via umbilical catheter to prevent clotting?

**A. 0.1 - 1 unit of heparin per mL of fluid**

**B. 5% dextrose**

**C. Vitamin K**

**D. Lactated Ringer's solution**

Adding heparin to fluids administered via an umbilical catheter is essential for preventing clotting. This anticoagulant works by activating antithrombin III, which in turn inhibits thrombin and factor Xa, thereby reducing the likelihood of clot formation in the catheter. Using a concentration of 0.1 to 1 unit of heparin per mL of fluid is a commonly accepted practice, ensuring that the anticoagulant effect is maintained while minimizing complications associated with clotting in the catheter. This is crucial in neonatal care, where maintaining catheter patency is vital for continuous access to the circulatory system for medications and nutrition. Other options, while relevant in different contexts, do not serve the same purpose. For instance, dextrose is primarily used for providing energy to patients, but it does not have anticoagulant properties. Vitamin K plays a role in blood clotting and is used to treat coagulation disorders, but its addition would not prevent clotting within the catheter itself. Lactated Ringer's solution serves as a rehydration fluid and does not have an effect on thrombus formation. Therefore, including heparin in the fluid administered through umbilical catheters is the appropriate measure to prevent clotting.

## 8. What should be done if the UAC/UVC is malpositioned?

**A. Advance the catheter immediately**

**B. Pull out but do not advance unless sterile**

**C. Leave it in place indefinitely**

**D. Consult a supervisor before taking action**

When dealing with a malpositioned Umbilical Artery Catheter (UAC) or Umbilical Vein Catheter (UVC), the appropriate action is to pull it out but refrain from advancing it unless sterile conditions are ensured. This approach is crucial for several reasons. First, if a catheter is malpositioned, advancing it could worsen the situation, potentially causing unintended harm to the neonate, such as perforation or damage to surrounding tissues. Pulling out the catheter ensures that any misplaced points are addressed without exacerbating the issue. Moreover, maintaining sterile conditions is vital in any clinical procedure involving catheters to prevent introducing infections. If there is any uncertainty about the position or whether it is appropriately placed, confirmation and verification by a more experienced professional or supervisor may also be warranted before proceeding. However, simply leaving a malpositioned catheter in place is not a safe option, as it could lead to complications for the infant. Thus, pulling it out while ensuring sterile technique for a new placement is the best practice in this situation.

**9. What is the initial percentage of oxygen that should be administered to a cyanotic infant?**

- A. 15%
- B. 21%**
- C. 30%
- D. 50%

In the case of a cyanotic infant, the initial percentage of oxygen that is typically recommended to be administered is 21%. This is significant because 21% reflects the normal concentration of oxygen in room air. When treating a cyanotic infant, it's essential to start with a percentage that is safe and close to what the infant's body is accustomed to receiving. Administering oxygen at this concentration allows healthcare providers to evaluate the infant's response and monitor for improvements in oxygen saturation and overall clinical status. If the infant does not respond adequately, the healthcare team can then increase the oxygen concentration as needed. The goal is to avoid potential oxygen toxicity that can arise from administering excessively high concentrations of oxygen without first determining the infant's baseline needs and tolerances. Understanding the appropriate starting point in oxygen therapy is crucial in neonatal care, particularly for cyanotic infants who may already be under stress from inadequate oxygenation. Starting with room air levels ensures a measured approach that prioritizes safety while still actively addressing the infant's condition.

**10. What is the normal range for oxygen saturation (SpO2) on room air (RA) in healthy late preterm and term infants by 24 hours of life?**

- A. 90.0% to 93.0%**
- B. 95.6% to 98.8%**
- C. 80.0% to 85.0%
- D. 98.0% to 100.0%

In healthy late preterm and term infants by 24 hours of life, the normal range for oxygen saturation (SpO2) on room air is generally recognized to be between 95.6% and 98.8%. This range is important for ensuring that infants are receiving adequate oxygenation and functioning well after birth. Saturations within this range indicate that the infant's lungs are adequately oxygenating their blood and that they are adjusting well to breathing air outside the womb. Lower saturation values may suggest problems with respiratory function, while values above this range may not be typical but could occur in very well oxygenated infants. Therefore, the choice that accurately reflects healthy SpO2 levels for this population in the specified time frame is essential for clinicians who monitor the health and development of newborns, ensuring prompt identification of any potential issues related to respiratory distress or other complications. Understanding this normal range helps healthcare providers make informed decisions in the care of neonates during their critical first hours of life, ensuring they can respond appropriately if oxygen saturation levels fall outside of the expected parameters.

# Next Steps

**Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.**

**As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.**

**If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at [hello@examzify.com](mailto:hello@examzify.com).**

**Or visit your dedicated course page for more study tools and resources:**

**<https://thetableprogram.examzify.com>**

**We wish you the very best on your exam journey. You've got this!**

**SAMPLE**