

# TeXes Science Practice Test (Sample)

## Study Guide



**Everything you need from our exam experts!**

**This is a sample study guide. To access the full version with hundreds of questions,**

**Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.**

**ALL RIGHTS RESERVED.**

**No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.**

**Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.**

**SAMPLE**

# Table of Contents

|                                    |           |
|------------------------------------|-----------|
| <b>Copyright</b> .....             | <b>1</b>  |
| <b>Table of Contents</b> .....     | <b>2</b>  |
| <b>Introduction</b> .....          | <b>3</b>  |
| <b>How to Use This Guide</b> ..... | <b>4</b>  |
| <b>Questions</b> .....             | <b>6</b>  |
| <b>Answers</b> .....               | <b>9</b>  |
| <b>Explanations</b> .....          | <b>11</b> |
| <b>Next Steps</b> .....            | <b>17</b> |

SAMPLE

# Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

# How to Use This Guide

**This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:**

## 1. Start with a Diagnostic Review

**Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.**

## 2. Study in Short, Focused Sessions

**Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.**

## 3. Learn from the Explanations

**After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.**

## 4. Track Your Progress

**Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.**

## 5. Simulate the Real Exam

**Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.**

## 6. Repeat and Review

**Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.**

## 7. Use Other Tools

**Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.**

**There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!**

**SAMPLE**

## **Questions**

SAMPLE

- 1. When creating assessments, what should teachers keep in mind?**
  - A. Content relevance**
  - B. Time limits**
  - C. Student interests**
  - D. Complexity of questions**
- 2. What is demonstrated by the passing of white light through a prism?**
  - A. White light is absorbed**
  - B. White light is a single color**
  - C. White light is a mixture of colors**
  - D. White light is polarized**
- 3. What term describes the immediate effects of intoxication due to alcohol consumption?**
  - A. Chronic effect**
  - B. Long-term effect**
  - C. Acute effect**
  - D. Reversible effect**
- 4. What should a science teacher avoid when planning instructional activities?**
  - A. Using diverse assessment strategies**
  - B. Considering different learning needs**
  - C. Using the same learning strategy on every student from year to year**
  - D. Setting clear learning goals**
- 5. Which factor contributed to the early atmosphere of the Earth breaking down gases?**
  - A. Geothermal activity**
  - B. Solar winds**
  - C. Sun's ultraviolet radiation**
  - D. Asteroid impacts**

**6. After heating 5 grams of glacial acetic acid at 98°C with 2500 joules of energy, what state will the substance be in?**

- A. Liquid at 98°C**
- B. Solid at room temperature**
- C. Five grams of acetic acid vapor at a temperature above 118°C**
- D. Mixture of liquid and vapor**

**7. What is the hardest mineral on the Mohs scale?**

- A. Quartz**
- B. Talc**
- C. Diamond**
- D. Corundum**

**8. Osmosis can best be described as which of the following processes?**

- A. Active transport of nutrients**
- B. Diffusion with water**
- C. Movement of solutes against a concentration gradient**
- D. The process of filtration**

**9. What do classroom assessments possess that varies among them?**

- A. A unique set of standards and guidelines**
- B. The same strengths and weaknesses**
- C. Different formats and structures**
- D. Their own set of strengths and weaknesses**

**10. What does Moore's Law describe regarding the number of transistors on an integrated circuit board?**

- A. It reduces every two years**
- B. It doubles approximately every two years**
- C. It remains constant over time**
- D. It quadruples approximately every two years**

## **Answers**

SAMPLE

1. B
2. C
3. C
4. C
5. C
6. C
7. C
8. B
9. D
10. B

SAMPLE

## **Explanations**

SAMPLE

**1. When creating assessments, what should teachers keep in mind?**

- A. Content relevance**
- B. Time limits**
- C. Student interests**
- D. Complexity of questions**

When creating assessments, it is essential for teachers to consider various factors, one of which is content relevance. Content relevance ensures that the assessment aligns with the curriculum and the specific learning objectives intended for the students. When assessments focus on relevant content, they accurately measure the students' understanding and mastery of the subject matter being taught. This alignment helps not only in evaluating student performance effectively but also in providing meaningful feedback that can guide future instruction. In addition to content relevance, factors like time limits, student interests, and the complexity of questions can play a role in assessment design, but ensuring that the material is directly related to the curriculum is foundational for effective evaluation.

**2. What is demonstrated by the passing of white light through a prism?**

- A. White light is absorbed**
- B. White light is a single color**
- C. White light is a mixture of colors**
- D. White light is polarized**

When white light passes through a prism, it undergoes refraction, which is the bending of light as it transitions between different mediums, in this case, from air to glass and back to air. This process causes the light to spread out into its constituent colors, creating a spectrum. The visible spectrum includes red, orange, yellow, green, blue, indigo, and violet—often remembered by the acronym ROYGBIV. This phenomenon clearly illustrates that white light is not a single color but rather a combination of multiple colors that can be separated and observed individually when they refract at different angles due to their varying wavelengths. This understanding helps clarify the nature of light and its interactions with materials, revealing the complexity within what appears to be a singular entity like white light. Other options, such as the absorption of light or the notion of white light being polarized, do not accurately represent the behavior of light in this scenario. Instead, the dispersion of light through a prism effectively demonstrates that white light is indeed a mixture of colors.

**3. What term describes the immediate effects of intoxication due to alcohol consumption?**

- A. Chronic effect**
- B. Long-term effect**
- C. Acute effect**
- D. Reversible effect**

The term that describes the immediate effects of intoxication due to alcohol consumption is the acute effect. This refers to the short-term, immediate physiological and psychological responses experienced after consuming alcohol. Symptoms such as impaired judgment, coordination issues, and changes in mood are all considered acute effects. These effects occur shortly after the consumption of alcohol and can vary in intensity based on the amount consumed and the individual's tolerance. Chronic effects refer to the long-term consequences of extensive alcohol use, such as liver damage or addiction. Long-term effects are generally associated with prolonged and sustained exposure to a substance rather than immediate intoxication. Reversible effects can describe certain immediate reactions, but they imply a restoration to a prior state without highlighting the immediate nature of acute effects, which is critical in the context of intoxication.

**4. What should a science teacher avoid when planning instructional activities?**

- A. Using diverse assessment strategies**
- B. Considering different learning needs**
- C. Using the same learning strategy on every student from year to year**
- D. Setting clear learning goals**

Using the same learning strategy on every student from year to year is something a science teacher should avoid because it fails to recognize the diverse needs and varying learning styles of students. Each cohort of students may have different backgrounds, abilities, and interests, and an effective educator adapts their instructional methods to meet these differences. Repeating the same approach year after year can lead to disengagement among students who may not connect with that particular strategy. It also neglects the opportunity for growth and innovation in teaching practices, which can enhance understanding and retention of scientific concepts. A responsive curriculum that evolves with student input and learning outcomes is crucial in fostering an engaging and effective educational environment. In contrast, utilizing diverse assessment strategies, considering different learning needs, and setting clear learning goals are practices that support differentiated instruction and contribute to a more effective learning experience.

**5. Which factor contributed to the early atmosphere of the Earth breaking down gases?**

- A. Geothermal activity**
- B. Solar winds**
- C. Sun's ultraviolet radiation**
- D. Asteroid impacts**

The early atmosphere of the Earth was primarily composed of gases such as hydrogen and helium, which were later influenced by a variety of factors. The primary reason that the Sun's ultraviolet radiation significantly contributed to the breakdown of gases in this atmosphere lies in its ability to provide high-energy photons. As the early Earth was bombarded by high levels of ultraviolet radiation due to a weak magnetic field and a lack of an ozone layer, this radiation caused photodissociation. Photodissociation is a process where molecules break apart into their constituent atoms under the influence of UV radiation. For instance, the intense ultraviolet light could break down water vapor into hydrogen and oxygen. This splitting of molecules contributed to a change in the atmospheric composition, paving the way for the development of a more complex atmosphere that would later support life. While geothermal activity, solar winds, and asteroid impacts may also have played a role in shaping the early Earth's environment, they did not directly break down atmospheric gases in the manner that ultraviolet radiation did. Therefore, recognizing the role of the Sun's ultraviolet radiation is crucial in understanding the evolution of the Earth's atmosphere during its formative years.

**6. After heating 5 grams of glacial acetic acid at 98°C with 2500 joules of energy, what state will the substance be in?**

- A. Liquid at 98°C**
- B. Solid at room temperature**
- C. Five grams of acetic acid vapor at a temperature above 118°C**
- D. Mixture of liquid and vapor**

To determine the state of glacial acetic acid after heating it with 2500 joules of energy, it is important to understand the properties of the substance and the phase transitions it can undergo. Glacial acetic acid is typically in a liquid state at room temperature and has a boiling point of approximately 118°C. When you heat it to 98°C, it remains in a liquid state, as that temperature is below its boiling point. However, by adding 2500 joules of energy, which corresponds to a significant amount of heat, the temperature of the acetic acid can be raised significantly. The key here is that the additional energy provided (2500 joules) is sufficient to not only reach the boiling point but also to combine with the heat needed for phase transition from liquid to vapor. Upon reaching the boiling point at 118°C, the acetic acid begins to evaporate, which means it changes from a liquid to a vapor. If the acetic acid is heated in a closed system and 2500 joules of energy exceeds the heat necessary for the phase change, it suggests that the acetic acid will transition completely to the vapor state, and thus will exist as a vapor at a temperature above 118°C.

## 7. What is the hardest mineral on the Mohs scale?

- A. Quartz
- B. Talc
- C. Diamond**
- D. Corundum

The hardest mineral on the Mohs scale is diamond. The Mohs scale is a relative scale that ranks minerals based on their ability to scratch one another. It ranges from 1 (the softest) to 10 (the hardest). Diamond is rated a 10, which means it can scratch all other minerals and cannot be scratched by any mineral. This unparalleled hardness is due to the strong covalent bonds between carbon atoms in the diamond's crystal structure, making it not only the hardest mineral but also one of the most valued due to its rarity and applications in various industries, particularly cutting and drilling tools. Understanding the characteristics and bonding of minerals like diamond helps in grasping why it stands alone at the top of the Mohs scale.

## 8. Osmosis can best be described as which of the following processes?

- A. Active transport of nutrients
- B. Diffusion with water**
- C. Movement of solutes against a concentration gradient
- D. The process of filtration

Osmosis is best described as diffusion specifically referring to the movement of water across a semipermeable membrane. In this process, water molecules move from an area of lower solute concentration (where there are more water molecules relative to solutes) to an area of higher solute concentration (where there are fewer water molecules relative to solutes). This movement continues until equilibrium is reached, meaning the concentration of solute is equal on both sides of the membrane. The essential aspect of osmosis is that it does not require energy input, differentiating it from active transport processes. Additionally, while diffusion typically involves the movement of a range of molecules (gases or solutes), osmotic diffusion is specifically related to the behavior of water in relation to solute concentrations. This underscores why the description of osmosis as diffusion with water perfectly captures its fundamental nature in biological systems.

**9. What do classroom assessments possess that varies among them?**

- A. A unique set of standards and guidelines**
- B. The same strengths and weaknesses**
- C. Different formats and structures**
- D. Their own set of strengths and weaknesses**

Classroom assessments are designed to evaluate student understanding and skills, and they inherently come with their own set of strengths and weaknesses. This variation can stem from several factors, including the nature of the content being assessed, the methods used to gather data (such as multiple-choice tests versus performance tasks), and the specific objectives the assessment aims to evaluate. For example, a traditional written exam may effectively assess recall and comprehension levels but may not adequately measure higher-order thinking skills or practical application. Conversely, a project-based assessment might excel in evaluating creativity and application but could introduce variability in grading due to subjective judgment. The unique characteristics of each assessment influence how they can be used in the classroom, allowing educators to choose different assessments based on their goals, the needs of their students, and the content area being covered. This distinction highlights the importance of understanding each type of assessment and selecting the appropriate ones to achieve desired educational outcomes.

**10. What does Moore's Law describe regarding the number of transistors on an integrated circuit board?**

- A. It reduces every two years**
- B. It doubles approximately every two years**
- C. It remains constant over time**
- D. It quadruples approximately every two years**

Moore's Law describes the observation that the number of transistors on an integrated circuit board doubles approximately every two years. This trend has been a guiding principle in the field of semiconductor technology and computer engineering, highlighting the rapid advancement in the ability to miniaturize transistors while increasing their performance and reducing costs. The doubling of transistors contributes significantly to increased processing power and efficiency in electronic devices, allowing for more complex and powerful applications. This law has been instrumental in predicting the growth of technology and has influenced planning in both research and development within the industry. The other options do not align with the fundamental principle outlined by Moore's Law. They either suggest a decrease in transistor numbers, a constant amount, or an increase at a different rate than what Moore predicted.

# Next Steps

**Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.**

**As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.**

**If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at [hello@examzify.com](mailto:hello@examzify.com).**

**Or visit your dedicated course page for more study tools and resources:**

**<https://texes-science.examzify.com>**

**We wish you the very best on your exam journey. You've got this!**

**SAMPLE**