

Texas A&M University (TAMU) ATMO201 Weather and Climate Exam 2 Practice (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Snowflakes can take on various shapes depending on what factor?**
 - A. Humidity levels**
 - B. Wind speed**
 - C. Temperature**
 - D. Air pressure**

- 2. What does the Coriolis force never influence?**
 - A. Wind direction**
 - B. Wind speed**
 - C. Temperature**
 - D. Humidity**

- 3. Which force causes air to move from areas of high pressure to low pressure?**
 - A. Coriolis Force**
 - B. Pressure Gradient Force**
 - C. Centrifugal Force**
 - D. Friction Force**

- 4. How do molecules behave in a warm air column?**
 - A. Become compact and dense**
 - B. Move slowly and shrink**
 - C. Move faster and expand**
 - D. Stay still**

- 5. What atmospheric layer is influenced by friction?**
 - A. The troposphere**
 - B. The friction layer**
 - C. The stratosphere**
 - D. The mesosphere**

6. What happens to the pressure and density of a warmer air column during a pressure gradient?

- A. They increase
- B. They remain constant
- C. They decrease
- D. They fluctuate

7. What type of precipitation consists of liquid drops with a diameter of less than 0.5 mm?

- A. Hail
- B. Sleet
- C. Drizzle
- D. Snow

8. What can change air pressure in the atmosphere?

- A. Only temperature changes
- B. Moving up or down in the atmosphere
- C. Wind speed variations
- D. Humidity levels

9. What is the typical size range of hail?

- A. 1 mm to 5 mm in diameter
- B. 5 mm to more than 15 cm in diameter
- C. 0.5 mm to 6 mm in diameter
- D. Up to 1 cm in diameter

10. Which type of clouds generally has a base lower than 2 km?

- A. High clouds
- B. Middle clouds
- C. Low clouds
- D. Ice clouds

Answers

SAMPLE

1. C
2. B
3. B
4. C
5. B
6. C
7. C
8. B
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. Snowflakes can take on various shapes depending on what factor?

- A. Humidity levels**
- B. Wind speed**
- C. Temperature**
- D. Air pressure**

Snowflake shapes are primarily influenced by temperature, which determines the rate of crystallization and the arrangement of water molecules as they freeze. As water vapor condenses and freezes in different temperature regimes, the various forms of ice crystals can emerge, leading to the intricate and diverse geometric patterns seen in snowflakes. For instance, at colder temperatures, snowflakes tend to form more simple shapes, such as columns or plates, while at slightly warmer temperatures, branched structures begin to develop. As temperature fluctuates, the rapid changes in the physical state of water and the crystalline structure can create a wide range of designs, including the commonly observed six-sided star shapes. This process is largely due to the balance of temperature and humidity in the environment during formation. Understanding the influence of temperature also illustrates the role of atmospheric conditions in snowflake formation, as the specific temperature at which snowflakes form directly correlates to their size and structure.

2. What does the Coriolis force never influence?

- A. Wind direction**
- B. Wind speed**
- C. Temperature**
- D. Humidity**

The Coriolis force is an apparent force that arises from the rotation of the Earth, influencing the direction of moving objects, such as the wind, but not their speed. It causes moving air to deflect to the right in the Northern Hemisphere and to the left in the Southern Hemisphere, thereby affecting wind direction significantly. However, the force does not exert any influence on wind speed. Wind speed is determined by pressure gradients and other meteorological factors, rather than the Coriolis effect. Temperature and humidity are also not affected by the Coriolis force, as these are properties of the air that are influenced by the energy received from the sun and the characteristics of air masses, respectively. However, neither temperature nor humidity is related to the deflection of moving air, which is the key role of the Coriolis force.

3. Which force causes air to move from areas of high pressure to low pressure?

- A. Coriolis Force
- B. Pressure Gradient Force**
- C. Centrifugal Force
- D. Friction Force

The force that causes air to move from areas of high pressure to low pressure is the Pressure Gradient Force. This force arises due to differences in atmospheric pressure. When there is a pressure difference across a distance, the air naturally flows from the region where the pressure is higher to the region where the pressure is lower, effectively seeking to balance the pressure differences in the atmosphere. This movement is fundamental to wind creation, as the greater the pressure difference, or gradient, the stronger the wind will be. The Pressure Gradient Force is essential in meteorology, as it directly relates to how weather systems develop and evolve. Understanding this force helps explain various weather phenomena, from gentle breezes to strong storms, as air seeks equilibrium in atmospheric pressure. In contrast, other forces mentioned such as the Coriolis Force, which is related to the rotation of the Earth and affects the direction of wind, and Centrifugal Force, which is more relevant to circular motion, do not directly cause air to move from high to low pressure. Friction Force is important in modifying wind speeds near the surface but does not initiate the movement of air due to pressure differences.

4. How do molecules behave in a warm air column?

- A. Become compact and dense
- B. Move slowly and shrink
- C. Move faster and expand**
- D. Stay still

In a warm air column, molecules behave in a way that is characterized by increased kinetic energy as the temperature rises. As the air warms, the molecules gain energy and begin to move faster. This increased motion causes the molecules to spread apart, resulting in the expansion of the air column. When air is heated, the space between the molecules increases due to this rapid movement, making the air less dense than cooler air. This phenomenon is fundamental to understanding weather patterns, as warm air tends to rise because it is lighter than the surrounding cooler air. The ability of warm air to expand and rise is crucial for the development of various weather systems and phenomena. In contrast to this, dense and compact molecules, slow movement, and stationary behavior are associated with cooler air. When temperatures drop, air molecules slow down, come closer together, and increase the density of the air, leading to different atmospheric characteristics.

5. What atmospheric layer is influenced by friction?

- A. The troposphere
- B. The friction layer**
- C. The stratosphere
- D. The mesosphere

The atmospheric layer most influenced by friction is the troposphere. This layer is the lowest part of the atmosphere and is where most of the weather phenomena occur. Friction plays a significant role in the troposphere, particularly near the Earth's surface, affecting wind patterns and the movement of air masses. As air moves over the surface, various features such as trees, buildings, and terrain cause a resistance that slows down the wind; this is what we refer to as friction. The impact of friction is most pronounced in the boundary layer of the troposphere, where turbulence is generated, leading to changes in wind direction and speed. In contrast, the stratosphere and mesosphere, which are situated above the troposphere, are less affected by surface friction due to their greater altitudes and the more stable atmospheric conditions present there. While there is no officially recognized friction layer, the concept reflects how frictional forces are especially relevant in the context of the troposphere, contrasting with the other layers where such effects are minimal.

6. What happens to the pressure and density of a warmer air column during a pressure gradient?

- A. They increase
- B. They remain constant
- C. They decrease**
- D. They fluctuate

In a warmer air column, the pressure and density generally decrease due to the characteristics of warm air. When air is heated, its molecules move more rapidly and tend to spread out, which leads to a decrease in density. This is a foundational principle in meteorology known as the ideal gas law, where an increase in temperature at a constant volume results in a decrease in density. As the air column warms, the pressure within it also decreases relative to cooler surrounding air. This is because the warmer air is less dense and doesn't exert as much force on the surface below it compared to colder, denser air. Thus, during a pressure gradient, where there is a difference in pressure across a distance, the warmer air will naturally facilitate a decrease in both pressure and density as it rises and spreads out. This understanding is crucial in meteorology, as it impacts wind patterns and weather systems. In contexts of smooth airflow, warm air rises in areas of lower pressure, contributing to the overall dynamics of the atmosphere.

7. What type of precipitation consists of liquid drops with a diameter of less than 0.5 mm?

- A. Hail**
- B. Sleet**
- C. Drizzle**
- D. Snow**

Drizzle is characterized by small liquid droplets that have a diameter of less than 0.5 mm. It typically falls more slowly and is lighter than other forms of rain, contributing to a more persistent and widespread form of precipitation. Drizzle occurs when the atmosphere is stable, and it often forms in overcast conditions, where clouds are not producing more intense precipitation. In contrast to other forms of precipitation, like hail, which involves larger ice pellets formed in strong thunderstorms, or sleet, which consists of small ice pellets that result when raindrops freeze before reaching the ground, drizzle is distinctly defined by its smaller droplet size and lighter intensity. Snow, while a common form of precipitation, involves frozen water crystals and does not fit the description of liquid drops.

8. What can change air pressure in the atmosphere?

- A. Only temperature changes**
- B. Moving up or down in the atmosphere**
- C. Wind speed variations**
- D. Humidity levels**

Air pressure in the atmosphere is influenced by various factors, and moving up or down in the atmosphere significantly impacts pressure due to the weight of the air above. As altitude increases, the amount of air above a given point decreases, leading to a decrease in air pressure. Conversely, as one descends in altitude, the air pressure increases because there is more air above pushing down. This variation in air pressure is a fundamental principle of atmospheric science. It is related to the hydrostatic balance, where pressure decreases with height in the atmosphere due to the gravitational pull on air molecules. Thus, if you move upwards in the atmosphere, the density and quantity of air molecules above you decrease, resulting in lower pressure. Conversely, descending increases the number of air molecules above, leading to higher pressure. Temperature, wind speed, and humidity can influence local air pressure but are not the primary reason for pressure changes related to movement in the atmosphere. For instance, while heating air can reduce its density and thus affect pressure, the effect of altitude change on pressure is more pronounced and direct.

9. What is the typical size range of hail?

- A. 1 mm to 5 mm in diameter
- B. 5 mm to more than 15 cm in diameter**
- C. 0.5 mm to 6 mm in diameter
- D. Up to 1 cm in diameter

Hail generally forms within strong thunderstorms and can vary significantly in size depending on the strength of the updrafts within those storms. The correct choice notes that hail can range from 5 mm to more than 15 cm in diameter. This range encompasses the common sizes of hailstones that can develop in severe weather conditions. Smaller hail typically occurs with weaker storms, but when conditions are right—specifically, when powerful updrafts can support larger ice particles in the cloud, allowing them to grow by collecting additional water and refreezing—hailstones can grow quite large. In fact, it is not unusual for severe thunderstorms to produce hailstones over 10 cm in diameter, which can cause significant damage to property, vehicles, and crops. The other options provide ranges that are too small or do not accurately reflect the potential size of hailstones found in severe weather events.

10. Which type of clouds generally has a base lower than 2 km?

- A. High clouds
- B. Middle clouds
- C. Low clouds**
- D. Ice clouds

Low clouds are characterized by their bases typically situated below 2 kilometers (approximately 6,500 feet) in altitude. These clouds are often associated with weather patterns that involve more moisture in the lower atmosphere, leading to phenomena such as overcast skies, drizzles, and sometimes fog. Examples of low clouds include stratus, stratocumulus, and nimbostratus, all of which can create a thick layer that doesn't rise very high into the atmosphere. In contrast, high clouds are generally found at altitudes above 6 kilometers (20,000 feet) and are usually composed of ice crystals, while middle clouds typically lie between 2 and 6 kilometers (6,500 to 20,000 feet) and include altostratus and altocumulus. Ice clouds refer to clouds that consist primarily of ice crystals, but this term is more commonly associated with higher altitude clouds, particularly when discussing cirrus clouds, which are found at high altitudes. The distinct characteristics of low clouds make them unique in their general formation and behavior within the weather system.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://tamu-atmo201exam2.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE