Terraform Associate
Practice Exam (Sample)

Study Guide

BY EXAMZIFY

Everything you need from our exam experts!

Sample study guide. For the full version with hundreds of questions, visit:

https://terraformassociate.examzify.com

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any
means, graphic, electronic, or mechanical, including photocopying,
recording, web distribution, taping, or by any information storage retrieval
system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate,
complete, and timely information about this product from reliable sources.

Sample study guide, visit https://terraformassociate.examzify.com
for the full version with hundreds of practice questions

Table of Contents

Copyright ..o e e 1
Table of Contentscccociieeaeens 2
INtroductionccccciciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiir e ceeeeae 3
How to Use This Guidecccociiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieniinens 4
L1011 =13 0) 1 7 5
ANSWETS ...iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiteteeentaacacosentosentonsncossntosensoscnsanss 8
EXplanationscccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieiieetiacnttnenenes 10

LN T] 1= 0 1 16

Introduction

Preparing for a certification exam can feel overwhelming, but with the
right tools, it becomes an opportunity to build confidence, sharpen your
skills, and move one step closer to your goals. At Examzify, we believe
that effective exam preparation isn’t just about memorization, it’s about
understanding the material, identifying knowledge gaps, and building
the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you’re preparing for a licensing exam, professional
certification, or entry-level qualification, this book offers structured
practice to reinforce key concepts. You’ll find a wide range of
multiple-choice questions, each followed by clear explanations to help
you understand not just the right answer, but why it’s correct.

The content in this guide is based on real-world exam objectives and
aligned with the types of questions and topics commonly found on
official tests. It’s ideal for learners who want to:

¢ Practice answering questions under realistic conditions,
e Improve accuracy and speed,

* Review explanations to strengthen weak areas, and

e Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but
alongside other resources like flashcards, textbooks, or hands-on
training. For best results, we recommend working through each
question, reflecting on the explanation provided, and revisiting the
topics that challenge you most.

Remember: successful test preparation isn’t about getting every question
right the first time, it’s about learning from your mistakes and improving
over time. Stay focused, trust the process, and know that every page you
turn brings you closer to success.

Let’s begin.

Sample study guide, visit https://terraformassociate.examzify.com
for the full version with hundreds of practice questions

How to Use This Guide

This guide is designed to help you study more effectively and approach
your exam with confidence. Whether you're reviewing for the first time
or doing a final refresh, here’s how to get the most out of your Examzify
study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what
you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes).
Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got
it right. It reinforces key points, corrects misunderstandings, and
teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions.
Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without
pausing. Set a timer and simulate test-day conditions to build confidence
and time management skills.

6. Repeat and Review

Don’t just study once, repetition builds retention. Re-attempt questions
after a few days and revisit explanations to reinforce learning. Pair this
guide with other Examzify tools like flashcards, and digital practice tests
to strengthen your preparation across formats.

There’s no single right way to study, but consistent, thoughtful effort
always wins. Use this guide flexibly, adapt the tips above to fit your pace
and learning style. You've got this!

Sample study guide, visit https://terraformassociate.examzify.com
for the full version with hundreds of practice questions

Questions

1. As a member of the operations team, which provision is

best to run a script on a virtual machine created by
Terraform?

A. local-exec
B. remote-exec
C. user-data

D. provisioner

2. Which command is used to initialize a working directory
containing Terraform configuration files?

A. terraform start

B. terraform init

C. terraform bootstrap
D. terraform configure

3. Which file typically contains the configuration for
Terraform providers?

A. main.tf

B. provider.tf
C. variables.tf
D. outputs.tf

4. Which errors does 'terraform validate' report related to
configuration consistency?

A. Duplicating variable names

B. Declaring a resource identifier more than once
C. Encoding issues in the configuration files

D. Inconsistent indentation of the HCL

5. When working with Terraform Enterprise and Cloud
Workspaces, how are they conceptually viewed?

A. As multiple instances of the same workspace

B. As completely separate working directories

C. As extensions of the same workspace

D. As deprecated versions of the original Terraform

Sample study guide, visit https://terraformassociate.examzify.com
for the full version with hundreds of practice questions

6. Which provisioner runs a process on the created resource?
A. local-exec

B. remote-exec
C. null-exec

D. command-exec

7. How do you specify a tag of v1.0.0 when referencing a Git
module?

A. Append IT to the end of the URL

B. Use the argument ref=v1.0.0

C. Add v1.0.0 after the repository name

D. Include version in the configuration file

8. Where in your Terraform configuration would you specify a
state backend?

A. In the providers block
B. In the variables block
C. In the terraform block
D. In the resources block

9. What is the workflow for deploying new infrastructure
using Terraform?

A. Write code and run commands randomly

B. Run init, apply, then plan

C. Write a configuration, then init, plan, and apply
D. Only run the apply command

10. Which function is not valid in Terraform's string
functions?

A. Join
B. Replace
C. Slice
D. Split

Sample study guide, visit https://terraformassociate.examzify.com
for the full version with hundreds of practice questions

Answers

BBBBBBBCCM
SNBFEON S S

Explanations

1. As a member of the operations team, which provision is
best to run a script on a virtual machine created by
Terraform?

A. local-exec
B. remote-exec

C. user-data
D. provisioner

The option to run a script on a virtual machine created by Terraform that is most suitable
is remote-exec. This provisioner is specifically designed to execute commands or scripts
on a remote machine after it has been created and is accessible via SSH or WinRM,
depending on the environment. When you use remote-exec, Terraform establishes a
connection to the VM and can run scripts directly in that context, which is essential for
configuring the machine as needed after its initial creation. This capability allows for
greater flexibility, such as installing software, configuring services, or performing any
number of tasks that must be executed in the context of the newly created VM. Other
options like local-exec are intended for running commands on the machine that is
executing Terraform itself, rather than on the remote VM. User-data typically refers to a
mechanism used in cloud-init or similar services to pass configuration scripts to
instances at launch time, but it does not provide the same execution control as
remote-exec. A provisioner is more of a category that encompasses both local-exec and
remote-exec, but it does not precisely indicate which type is best suited for running
scripts on a VM created by Terraform. Thus, remote-exec stands out as the most
appropriate choice in this context.

2. Which command is used to initialize a working directory
containing Terraform configuration files?

A. terraform start
B. terraform init

C. terraform bootstrap
D. terraform configure

The command used to initialize a working directory containing Terraform configuration
files is "terraform init." This command prepares the directory for other Terraform
commands by setting up the necessary file structures, downloading provider plugins, and
verifying that the required plugins are available. When you run "terraform init,"
Terraform performs several critical tasks: 1. **Provider Initialization**: It detects which
providers are specified in the configuration files and downloads the required provider
binaries from the Terraform Registry. This ensures that you have the correct version of
each provider necessary for your project. 2. **Backend Initialization**: If you are using a
remote backend for storing your Terraform state, "terraform init" will configure it as
specified in your configuration files. This enables the management of your state file
remotely. 3. **Module Installation**: If your configuration references any modules,
"terraform init" will also retrieve those modules, ensuring that your configuration will
function as intended. 4. **File Structure Setup**: It sets up the necessary folder
structures and files to ensure the working directory is ready for further Terraform
commands. The other choices do not serve this purpose. "terraform start," "terraform
bootstrap," and "terraform configure" are not valid Terraform commands, as they do not
perform the initialization functions that "terraform init

Sample study guide, visit https://terraformassociate.examzify.com
for the full version with hundreds of practice questions

3. Which file typically contains the configuration for
Terraform providers?

A. main.tf
B. provider.tf

C. variables.tf
D. outputs.tf

The configuration for Terraform providers is generally contained within a file named
"provider.tf." This file is specifically designated for defining the providers used in a
Terraform configuration, along with their required settings and versions. By isolating
provider definitions in this way, it enhances clarity and organization, allowing users to
easily identify and manage the integration of various cloud services or APIs. In
"provider.tf," you typically specify details such as which provider to use (e.g., AWS, Azure,
Google Cloud) and any necessary credentials or configurations required to connect to
that provider's services. This structure is useful because it allows for a focused view of
provider-related configurations, making it easier to adjust or update these settings
without needing to sift through the broader configuration files. Other files serve
different purposes within a Terraform configuration. "main.tf" often contains the primary
resources and core logic of the infrastructure being defined, whereas "variables.tf" is
used to define input variables that can be referenced throughout the configuration.
"outputs.tf' is dedicated to specifying output values that can be used after the Terraform
execution is complete. Each file has its role, but when it comes to defining providers,
"provider.tf" is the standard choice.

4. Which errors does 'terraform validate' report related to
configuration consistency?

A. Duplicating variable names
B. Declaring a resource identifier more than once

C. Encoding issues in the configuration files
D. Inconsistent indentation of the HCL

The command ‘terraform validate' primarily checks for syntax and configuration errors
within the Terraform configuration files. Among the given choices, declaring a resource
identifier more than once is a clear violation of Terraform's resource declaration rules.
When Terraform encounters duplicate resource identifiers, it cannot determine which
resource to reference, leading to ambiguity and potential functional issues in the
infrastructure definition. This form of error directly affects the integrity and reliability
of the configuration, as Terraform expects resource names to be unique within the same
module. Thus, 'terraform validate' will report this situation as an error, allowing the user
to correct it before proceeding to apply changes. In contrast, duplicating variable names
and inconsistent indentation may not necessarily be flagged as critical errors by
'terraform validate,' as it primarily focuses on semantic correctness rather than stylistic
consistency. Encoding issues in configuration files could potentially lead to parsing
errors but would likely arise during the execution phase rather than during validation.

Sample study guide, visit https://terraformassociate.examzify.com
for the full version with hundreds of practice questions

5. When working with Terraform Enterprise and Cloud
Workspaces, how are they conceptually viewed?

A. As multiple instances of the same workspace

B. As completely separate working directories
C. As extensions of the same workspace

D. As deprecated versions of the original Terraform

When working with Terraform Enterprise and Cloud Workspaces, they are conceptually
viewed as completely separate working directories. Each workspace serves as an isolated
environment allowing users to manage infrastructure and states independently. This
means that each workspace can have its own set of variables, configurations, and state
files that are distinct from those of other workspaces. This separation is crucial for
managing different environments like development, testing, and production, enabling
teams to work simultaneously without interference between projects. The concept of
separate working directories aligns with Terraform’s design philosophy of maintaining
infrastructure as code while allowing flexibility in environment management. Each
workspace can be thought of as a dedicated context for deploying and managing
resources, thus providing a clean and organized way to interact with multiple
environments. This independence of workspaces ensures safe and predictable
infrastructure management practices.

6. Which provisioner runs a process on the created resource?
A. local-exec
B. remote-exec

C. null-exec
D. command-exec

The provisioner that runs a process on the created resource is the remote-exec
provisioner. This type of provisioner is designed to execute scripts or commands directly
on the remote resource that has just been created. For example, if you are provisioning a
virtual machine in the cloud, the remote-exec provisioner allows you to run commands
within the context of that machine after it has been provisioned. Using the remote-exec
provisioner is beneficial when you need to configure the resource or install software as
part of the deployment process. It connects to the resource via SSH (for Linux-based
systems) or WinRM (for Windows), executing the specified commands in the proper
environment of the created resource. In contrast, the local-exec provisioner runs
commands on the machine where Terraform is executed, not on the target resource
itself. Null-exec is a placeholder provisioner that does nothing, and "command-exec" is
not a recognized Terraform provisioner type. Thus, remote-exec is the correct choice for
running processes on the resource that has been created.

Sample study guide, visit https://terraformassociate.examzify.com
for the full version with hundreds of practice questions

7. How do you specify a tag of v1.0.0 when referencing a Git
module?

A. Append IT to the end of the URL

B. Use the argument ref=v1.0.0
C. Add v1.0.0 after the repository name

D. Include version in the configuration file

To specify a tag of v1.0.0 when referencing a Git module in Terraform, using the
argument ref=v1.0.0 is the correct approach. The ‘ref’ argument allows you to define a
specific version of the module you wish to use, whether it be a branch, tag, or commit
hash. By setting ‘ref" to v1.0.0, Terraform will pull the module code associated with that
specific tag from the Git repository. This method ensures that your infrastructure
configuration is consistent and reproducible by locking it to a known, stable version of
the module, rather than relying on the latest commit from the repository, which may lead
to unexpected changes and behaviors in your deployments. Regarding the other options,
appending IT to the URL, adding v1.0.0 after the repository name, or including version in
the configuration file may not follow the standard syntax and semantics that Terraform
expects when working with Git module sources. Thus, they would not effectively achieve
the goal of accurately pinning to that specific version.

8. Where in your Terraform configuration would you specify a
state backend?

A. In the providers block
B. In the variables block
C. In the terraform block
D. In the resources block

The state backend in a Terraform configuration is specified in the terraform block. This
block is dedicated to defining settings related to the Terraform configuration, including
settings for the backend which is responsible for storing the state file. Defining the
backend in the terraform block enables you to configure how and where Terraform will
save the state of your infrastructure. This could be a local file, or it could be a remote
backend like Amazon S3, HashiCorp Consul, or Terraform Cloud, allowing for
collaboration and state management across different team members. By centralizing this
configuration in the terraform block, it provides clarity and organization in the
Terraform files, distinguishing these settings from resource definitions or variable
declarations. Other areas such as the providers block, variables block, and resources
block serve different purposes. The providers block configures the providers needed for
the infrastructure resources, the variables block defines input variables for
parametrization, and the resources block is focused solely on declaring infrastructure
resources. Thus, none of these blocks would be appropriate for specifying a state
backend.

Sample study guide, visit https://terraformassociate.examzify.com
for the full version with hundreds of practice questions

9. What is the workflow for deploying new infrastructure
using Terraform?

A. Write code and run commands randomly
B. Run init, apply, then plan
C. Write a configuration, then init, plan, and apply

D. Only run the apply command

The workflow for deploying new infrastructure using Terraform follows a systematic
approach to ensure that the configuration is correctly managed and applied. The correct
sequence involves writing a configuration file that defines the desired state of the
infrastructure. After creating the configuration, the first command to run is 'init’, which
initializes the working directory containing the Terraform configuration files. This step
downloads any necessary provider plugins and prepares the environment for working
with Terraform. Following initialization, the 'plan’' command is executed. This command
allows users to preview the changes that will occur based on the current configuration
compared to the existing state. It's an essential step to verify that the changes are as
expected before any infrastructure alterations occur. Finally, the 'apply' command is run
to actually implement the changes outlined in the plan, creating the infrastructure as
specified. This three-step process — writing a configuration, then initializing, planning,
and applying — ensures that users have clear visibility into the changes being made and
reduces the risk of unintended consequences during the deployment of new
infrastructure.

10. Which function is not valid in Terraform's string
functions?

A. Join
B. Replace
C. Slice
D. Split

The function that is not valid in Terraform's string functions is Slice. In Terraform, string
functions fulfill specific roles related to manipulating strings, but Slice is not among
them. The Join function is used to concatenate elements of a list into a single string,
using a specified delimiter. Replace allows for specific substrings within a string to be
replaced with another substring. The Split function divides a string into a list of
substrings based on a specified delimiter. Each of these functions is part of Terraform's
core capabilities for string manipulation. On the other hand, Slice refers more to a
collection of elements, such as lists or maps, and is used with data types that support
indexing rather than direct string manipulation. This distinction highlights why Slice
does not fit into the category of string functions within Terraform. Understanding the
specific roles and applications of these functions is crucial for effective Terraform usage.

Sample study guide, visit https://terraformassociate.examzify.com
for the full version with hundreds of practice questions

Next Steps

Congratulations on reaching the final section of this guide. You've taken
a meaningful step toward passing your certification exam and advancing
your career.

As you continue preparing, remember that consistent practice, review,
and self-reflection are key to success. Make time to revisit difficult
topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we’d love
to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:
https://terraformassociate.examzify.com

We wish you the very best on your exam journey. You've got this!

Sample study guide, visit https://terraformassociate.examzify.com
for the full version with hundreds of practice questions v-1769475358 | Page 16

