Terraform Associate
Practice Exam (Sample)

Study Guide

BY EXAMZIFY

Everything you need from our exam experts!

Sample study guide. Visit https://terraformassociate.examzify.com




Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any
means, graphic, electronic, or mechanical, including photocopying,
recording, web distribution, taping, or by any information storage retrieval
system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable
sources accurate, complete, and timely information about this product.

Sample study guide. Visit https://terraformassociate.examzify.com for the full version



Questions

Sample study guide. Visit https://terraformassociate.examzify.com for the full version



1. When does terraform apply reflect changes in the cloud
environment?

A. Immediately upon execution
B. After a manual approval
C. After the next scheduled run

D. However long it takes the resource provider to fulfill the
request

2. Which backend does the Terraform CLI use by default?
A. Remote
B. Cloud
C. Local
D. Shared

3. If a module uses local values, what feature can be used to
expose those values?

A. Terraform variable

B. Terraform output

C. Terraform data source
D. Terraform input

4. Which command is primarily used to create a new resource
in Terraform?

A. terraform plan
B. terraform apply
C. terraform init

D. terraform destroy

5. Which Terraform collection type is best for storing
key/value pairs?

A. List
B. Map
C. Set
D. Array

Sample study guide. Visit https://terraformassociate.examzify.com for the full version



6. A Terraform provider is not responsible for:
A. Provisioning resources in a single cloud
B. Managing configurations
C. Provisioning infrastructure in multiple clouds
D. Interacting with the cloud provider's API

7. What is the purpose of the .terraform.lock.hcl file in
Terraform?

A. To secure the Terraform configurations
B. To track provider dependencies

C. To log changes made

D. To store user credentials securely

8. What is true about Terraform Cloud tiers regarding team
management?

A. Only the higher tiers support team management

B. All Terraform Cloud tiers support team management and
governance

C. None of the tiers support team management

D. Team management is a feature of local Terraform
installations only

9. Which of the following statements describes the behavior
of Terraform when managing infrastructure?

A. It locks the state file after every change
B. It allows manual changes to infrastructure without tracking

C. It automatically updates the state file after any change made
outside of Terraform

D. It does not track changes made outside of Terraform until
the next plan or apply

10. How does Terraform know the order to create resources?
A. Through user-defined order in configuration
B. Automatically based on dependencies
C. Using defined tags for resource grouping
D. Users must manually specify order

Sample study guide. Visit https://terraformassociate.examzify.com for the full version



Answers

Sample study guide. Visit https://terraformassociate.examzify.com for the full version



SPRNomRwWbE
GO RROBEEOC

c )

Sample study guide. Visit https://terraformassociate.examzify.com for the full version



Explanations

Sample study guide. Visit https://terraformassociate.examzify.com for the full version



1. When does terraform apply reflect changes in the cloud
environment?

A. Immediately upon execution
B. After a manual approval
C. After the next scheduled run

D. However long it takes the resource provider to fulfill the
request

The correct response to when Terraform apply reflects changes in the cloud environment
is that it occurs however long it takes the resource provider to fulfill the request. This
means that after executing the "terraform apply’ command, Terraform doesn't instantly
update resources; rather, it sends requests to the respective cloud provider's API to
create, update, or delete resources as specified in the Terraform configuration files. The
time it takes for changes to be reflected in the cloud environment is dependent on the
provider's system and how quickly it can process the request. For example, some
resources may be provisioned almost instantly, while others might take several minutes
or longer depending on various factors such as the complexity of the resource or the
current workload of the cloud provider. In contrast, immediate execution implies that
changes would show up in the cloud environment as soon as the apply command runs,
which is not accurate because it does not account for the time needed for the provider to
process these requests. Manual approvals do not normally occur in standard deployment
processes for infrastructure as code in Terraform, as the apply command is generally
automated. Lastly, thinking that changes would only reflect after a scheduled run does
not align with how Terraform's apply function operates, as it performs actions on demand
rather than on a schedule.

2. Which backend does the Terraform CLI use by default?
A. Remote
B. Cloud
C. Local
D. Shared

The Terraform CLI uses the local backend by default, which means that it stores the state
file on the local filesystem. This state file is crucial because it keeps track of the
resources that Terraform manages, providing a mapping between the configuration and
the actual deployment. When you initialize a Terraform project without specifying a
backend, it automatically creates or looks for a "terraform.tfstate’ file in the current
working directory. Using the local backend allows users to work with Terraform in a
straightforward manner, especially for small projects or when experimenting. However,
as projects scale or collaboration becomes necessary, transitioning to a more robust
backend, such as remote or cloud backends, becomes common practice. These backends
offer additional features like state locking and remote storage, which are not available
with the local backend. Other options like remote, cloud, and shared do not represent
the default behavior when first using Terraform, and they require explicit configuration
to be utilized. This local backend is a fundamental aspect of how Terraform operates,
making it essential to understand for effective usage.

Sample study guide. Visit https://terraformassociate.examzify.com for the full version



3. If a module uses local values, what feature can be used to
expose those values?

A. Terraform variable
B. Terraform output

C. Terraform data source
D. Terraform input

When a module uses local values, Terraform outputs are the feature that can be used to
expose those values. Outputs in Terraform allow you to define return values from a
module that can be accessed from the parent module or elsewhere in your configuration.
This is particularly useful when you want other parts of your infrastructure to use
computed values generated within a module, making the outputs a vital communication
interface between modules. By defining outputs, you provide a way to retrieve data that
is not directly accessible outside of the module itself. This can include local values that
have been calculated for use within the module, which you now want to share at a higher
level. For example, an output might expose the result of a calculation or a reference to a
resource created within the module, enabling other parts of your Terraform
configuration to utilize this data effectively. In contrast, variables serve as inputs to
modules rather than a means to expose internal values, data sources are used to fetch
and reference data from outside your Terraform configuration, and inputs are
parameters that allow you to customize module behavior at runtime. Outputs serve a
distinct purpose in encapsulating and sharing internal data from a module, making them
the appropriate choice for exposing local values.

4. Which command is primarily used to create a new resource
in Terraform?

A. terraform plan
B. terraform apply

C. terraform init
D. terraform destroy

The command primarily used to create a new resource in Terraform is "“terraform apply .
This command is responsible for applying the planned changes that Terraform generates
based on the configuration files you have defined. When you run "terraform apply’,
Terraform will create, modify, or delete resources in your cloud provider's environment
to match the desired state specified in your configuration files. Before actually applying
any changes, terraform apply’ may prompt the user to confirm the execution of the
planned actions. This provides an opportunity to review changes before they are
implemented. If the resources do not already exist, this command will create them,
effectively setting up the infrastructure that your Terraform configuration describes.
The other commands serve different purposes. For instance, “terraform plan® generates
an execution plan that shows what actions Terraform will take but does not actually
create any resources. terraform init’ is used to initialize a Terraform working directory
and prepare it for other commands, while "terraform destroy’ is intended to remove
existing resources rather than create them. Thus, "terraform apply is the correct answer
for creating new resources in Terraform.

Sample study guide. Visit https://terraformassociate.examzify.com for the full version



5. Which Terraform collection type is best for storing
key/value pairs?

A. List

B. Map
C. Set

D. Array

The best collection type for storing key/value pairs in Terraform is a Map. A Map is an
unordered collection composed of unique keys that are associated with values. This
structure allows for easy retrieval and management of data based on the specified keys,
making it suitable for various configuration scenarios. Maps are particularly
advantageous when you want to associate specific configurations or settings with
identifiable keys, as they provide greater readability and organization. For example, in
scenarios where you are defining resource attributes or passing configuration variables,
using a Map can help you define those relationships clearly. On the other hand, Lists,
Sets, and Arrays do not support key/value data structures. Lists are ordered collections
that allow duplicate values but do not associate values with unique keys. Sets, while also
unordered and unique, only store values without a corresponding key, which limits their
functionality for storing pairs. Arrays are not a distinct collection type in Terraform
terminology and typically refer to ordered lists in programming, again without key
associations. Thus, a Map is the optimal choice for managing key/value pairs in
Terraform.

6. A Terraform provider is not responsible for:
A. Provisioning resources in a single cloud
B. Managing configurations

C. Provisioning infrastructure in multiple clouds
D. Interacting with the cloud provider's API

A Terraform provider is specifically designed to facilitate interactions with a cloud
provider's API and to manage resources. Its primary role is to abstract the complexities
of the underlying infrastructure and allow Terraform configurations to interact with
various resources provided by cloud services. The option indicating that a provider is
not responsible for provisioning infrastructure in multiple clouds reflects a nuanced
understanding of providers. While some providers are built for specific cloud platforms,
Terraform itself can integrate multiple providers, enabling users to define infrastructure
across multiple cloud environments with a single configuration file. However, a single
provider typically focuses on resources within a single cloud or ecosystem. Providers do
indeed manage resources within a specific cloud environment and are responsible for
provision operations needed to ensure those resources are created, updated, or destroyed
as needed. They interact with the APIs of cloud providers to perform these tasks.
Therefore, it is accurate to state that each provider does not inherently handle the
orchestration of resources across multiple clouds; that responsibility typically lies with
the overall Terraform execution and configuration rather than individual providers.

Sample study guide. Visit https://terraformassociate.examzify.com for the full version

10



7. What is the purpose of the .terraform.lock.hcl file in
Terraform?

A. To secure the Terraform configurations
B. To track provider dependencies

C. To log changes made
D. To store user credentials securely

The .terraform.lock.hcl file is essential for maintaining the integrity and consistency of
provider dependencies in Terraform projects. When you run Terraform commands that
involve providers, the tool resolves the required provider versions and their
dependencies. These resolved versions are documented in the .terraform.lock.hcl file.
This file ensures that anyone who executes the same Terraform configuration in the
future will use the exact same versions of the providers, leading to predictable and
reproducible infrastructure deployments. By locking the provider versions, it prevents
unintentional upgrades that could introduce breaking changes or unexpected behavior in
your infrastructure. This is particularly valuable in collaborative environments or in
production systems where stability is crucial. The other options do not accurately
represent the file's purpose. While securing configurations, logging changes, and storing
user credentials are important aspects of managing Terraform projects, they do not

pertain to the specific role of the .terraform.lock.hcl file in tracking provider
dependencies.

8. What is true about Terraform Cloud tiers regarding team
management?

A. Only the higher tiers support team management

B. All Terraform Cloud tiers support team management and
governance

C. None of the tiers support team management

D. Team management is a feature of local Terraform
installations only

All Terraform Cloud tiers indeed support team management and governance features.
This capability allows users to create teams within their organization, assign roles and
permissions to those teams, and manage their access to resources and workflows in a
more structured way. This is essential for organizations that require collaborative efforts
within their DevOps teams and want to ensure that different teams can operate within
their own workflows while adhering to organizational policies. This functionality is
beneficial for streamlining access control and maintaining best practices across teams.
By supporting team management in all tiers, Terraform Cloud provides flexibility and
scalability for teams of different sizes, accommodating various organizational needs. The
other options do not accurately reflect the capabilities of Terraform Cloud. While higher
tiers may offer advanced features, the correct position is that all tiers provide
fundamental team management capabilities. This inclusivity ensures that even users at
the basic level can benefit from effective collaboration tools that facilitate governance
and secure resource management.

Sample study guide. Visit https://terraformassociate.examzify.com for the full version 11



9. Which of the following statements describes the behavior
of Terraform when managing infrastructure?

A. It locks the state file after every change
B. It allows manual changes to infrastructure without tracking

C. It automatically updates the state file after any change made
outside of Terraform

D. It does not track changes made outside of Terraform until
the next plan or apply

The behavior of Terraform in managing infrastructure is accurately captured by the
assertion that it does not track changes made outside of Terraform until the next plan or
apply is executed. When Terraform manages infrastructure, it maintains a state file that
reflects the current configuration of the managed resources. If changes are made directly
to the infrastructure outside of Terraform (such as through the cloud provider's console),
those alterations are not immediately recognized by Terraform. During the next
execution of a "terraform plan’ or "terraform apply’, Terraform will then compare the
actual infrastructure against the state file to identify discrepancies. This allows
Terraform to reflect any changes that have occurred outside of its purview during the
next operations, enabling users to see what is different and manage those changes
accordingly. The other options do not align with Terraform's behavior: locking the state
file after every change is not how Terraform works, as it only locks the state during
critical operations; allowing manual changes without tracking is counter to the
principles of infrastructure as code; and automatic state file updates after external
changes would undermine Terraform’s purpose of tracking and applying infrastructure
as defined in its configuration files.

10. How does Terraform know the order to create resources?
A. Through user-defined order in configuration
B. Automatically based on dependencies

C. Using defined tags for resource grouping
D. Users must manually specify order

Terraform determines the order to create resources primarily through automatic
dependency management. When Terraform analyzes the configuration files, it assesses
the relationships between different resources. For instance, if one resource needs to
reference the output of another resource (like an IP address or a database ID), Terraform
understands these dependencies and constructs a dependency graph. This ensures that
resources are created in the correct order, with each resource being provisioned only
after its dependencies have been satisfied. This automatic handling of dependencies
alleviates the requirement for users to manually specify the order in which resources
should be created, as Terraform intelligently interprets the necessary relationships. As a
result, Terraform can optimize the resource creation process while ensuring that
everything is provisioned successfully without user intervention in the order of
operations.

Sample study guide. Visit https://terraformassociate.examzify.com for the full Y625504515 | Page 12



