

Tennessee Residential Contractor Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. When dirt is moved from its natural state, this is referred to as what condition?**
 - A. Swell or loose condition**
 - B. Settled state**
 - C. Compacted state**
 - D. Soil shear**
- 2. Which of the following are considered the three types of reinforced concrete?**
 - A. Wood, Steel, Fiber**
 - B. Rebar, Wire mesh, Fiber**
 - C. Rebar, Welded wire reinforcement (WWR), Fiber**
 - D. Bricks, Steel, Concrete**
- 3. To estimate the number of 16" on center studs required for exterior walls, how many studs are needed per linear foot of wall?**
 - A. Half a stud**
 - B. One stud**
 - C. Two studs**
 - D. Three studs**
- 4. To ensure stability, what angle should non-self-supporting ladders be used at?**
 - A. 30 degrees**
 - B. 45 degrees**
 - C. 60 degrees**
 - D. Approximately 1 quarter of the working length**
- 5. What type of tie is galvanized steel and fits into a slot formed in a concrete beam or column?**
 - A. Strap tie**
 - B. Corrugated tie**
 - C. Flat tie**
 - D. Shear tie**

6. What is typically included in the construction of a raised panel wood door?

- A. Only the stiles**
- B. Only the panels**
- C. The stiles, rails, and raised panels**
- D. Just the frame**

7. How many square feet of gypsum board are needed for a room that measures 12' x 16' with an 8' ceiling?

- A. 384 square feet**
- B. 640 square feet**
- C. 960 square feet**
- D. 1280 square feet**

8. What soil compaction method utilizes high frequency vibration?

- A. Dynamic compaction**
- B. Vibration soil compaction**
- C. Static compaction**
- D. Impact compaction**

9. What term describes the amount of upward deflection necessary to counteract the downward deflection in concrete forms?

- A. Elevation**
- B. Camber**
- C. Arch**
- D. Counterbalance**

10. In a stairway measuring 8 feet 2 inches with a riser height of 7 inches, how many risers are present?

- A. 12**
- B. 13**
- C. 14**
- D. 15**

Answers

SAMPLE

1. A
2. C
3. B
4. D
5. B
6. C
7. B
8. B
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. When dirt is moved from its natural state, this is referred to as what condition?

- A. Swell or loose condition**
- B. Settled state**
- C. Compacted state**
- D. Soil shear**

When dirt is moved from its natural state, it typically enters what is called a swell or loose condition. This occurs because when soil is excavated, it is usually disturbed and can expand or swell, leading to a looser arrangement of its particles compared to how they were naturally compacted in the ground. This loose condition is important to consider in construction and excavation, as it can affect stability, drainage, and the overall integrity of structures that will be built on or near this soil. The concept of swell is crucial for predicting how much soil expands once removed from the ground, which influences how much material will be required for backfilling or how soil may behave under load. Understanding the loose condition of soil helps contractors and engineers make informed decisions regarding site preparation, foundation design, and other construction practices. In contrast, the other choices refer to different soil conditions or behaviors that are not directly related to the initial disturbance from its natural state. For instance, the terms settled state and compacted state refer to soil being packed down over time or through mechanical means, while soil shear relates to the strength of soil and its resistance to sliding along a surface.

2. Which of the following are considered the three types of reinforced concrete?

- A. Wood, Steel, Fiber**
- B. Rebar, Wire mesh, Fiber**
- C. Rebar, Welded wire reinforcement (WWR), Fiber**
- D. Bricks, Steel, Concrete**

The answer is correct because the three types of reinforced concrete typically recognized in construction practices are rebar, welded wire reinforcement (WWR), and fiber. Rebar, or reinforcing bar, is the most common type of reinforcement and is used to enhance the tensile strength of concrete, which is strong under compression but weak under tension. The addition of rebar helps prevent cracking and structural failure. Welded wire reinforcement (WWR) consists of grids of steel wires that are welded together. This type of reinforcement provides uniform support and helps control cracking in larger concrete slabs. Fiber reinforcement involves adding synthetic or natural fibers to the concrete mix. These fibers can help to control shrinkage, improve impact resistance, and enhance the overall durability of the concrete. The other options don't accurately reflect the standard types of reinforced concrete used in construction. Wood, bricks, and concrete do not serve as reinforcements but rather as structural components on their own. While steel can refer to rebar, the presence of materials like wood or bricks does not pertain to reinforced concrete. Therefore, the proper classification of reinforced concrete is clearly represented in the accepted types mentioned in the correct answer.

3. To estimate the number of 16" on center studs required for exterior walls, how many studs are needed per linear foot of wall?

- A. Half a stud**
- B. One stud**
- C. Two studs**
- D. Three studs**

When estimating the number of 16" on center studs needed for exterior walls, it's important to understand the spacing and configuration of the studs. "16" on center" means that the center of one stud to the center of the next stud is 16 inches apart. Since there are 12 inches in a foot, you can fit approximately three sets of 16-inch spacings into a linear foot, with a little bit of room left over. However, when calculating how many studs are needed per linear foot of wall, you will firmly establish that you need one stud at every 16 inches. At the end of each 16-inch segment (up to 32 inches and beyond), those segments will require a stud at that location to support the wall framing. Since the first stud starts at 0 inches, you place one stud at 0 inches (the beginning of the wall), another stud at the 16-inch mark, and while it's common not to count the fractional residual space left at the end of the wall (like in a typical residential wall that ends before 32 inches), the estimation remains straightforward for each one-foot section. Thus, you would need one stud for each linear foot, as it encapsulates segments of framing

4. To ensure stability, what angle should non-self-supporting ladders be used at?

- A. 30 degrees**
- B. 45 degrees**
- C. 60 degrees**
- D. Approximately 1 quarter of the working length**

The ideal angle for non-self-supporting ladders is best represented by approximating a quarter of the working length. This means that for every four feet of height, the base of the ladder should be positioned one foot away from the wall or support it is leaning against. This 1:4 ratio provides a stable base, reducing the likelihood of the ladder slipping or tipping while in use. Using this guideline ensures that the ladder remains secure and minimizes the risk of accidents, which is essential in maintaining safety standards during construction or maintenance tasks. The angle formed approximates the correct incline needed for stability without compromising the load-bearing capacity of the ladder. In contrast, while angles like 30, 45, or 60 degrees may be common assumptions, they do not provide the same level of stability that the 1:4 rule ensures, especially when dealing with non-self-supporting ladders. Following this guideline ultimately promotes safer practices and aligns with industry standards for ladder use.

5. What type of tie is galvanized steel and fits into a slot formed in a concrete beam or column?

- A. Strap tie**
- B. Corrugated tie**
- C. Flat tie**
- D. Shear tie**

The correct answer identifies the corrugated tie, which is designed to fit into a slot formed in a concrete beam or column. Corrugated ties are utilized to provide support and connect structural elements together, especially in reinforcing the interactions between concrete components. Their design, featuring a corrugated shape, allows for better resistance to shear and tension forces, making them particularly effective in securing concrete structures. Additionally, galvanized steel is commonly used for these ties due to its corrosion-resistant properties, ensuring longevity and durability in structural applications. The slot-forming aspect is what distinguishes them from other types, as it allows for a snug fit that enhances overall structural integrity. Understanding the specific applications and benefits of different tie types is essential for contractors, as it affects the strength and stability of the structures being built or repaired.

6. What is typically included in the construction of a raised panel wood door?

- A. Only the stiles**
- B. Only the panels**
- C. The stiles, rails, and raised panels**
- D. Just the frame**

The construction of a raised panel wood door typically includes the stiles, rails, and raised panels. Stiles are the vertical components on the edges of the door, while rails are the horizontal pieces that connect them. The raised panels fit into the framework created by the stiles and rails, providing depth and visual interest to the door's surface. This construction method not only enhances the door's appearance but also contributes to its structural integrity. In the context of door design, the inclusion of all three components—stiles, rails, and raised panels—is essential for achieving the traditional look and functionality expected of raised panel doors. The combination of these elements allows for a robust and aesthetically pleasing finished product that is common in various architectural styles.

7. How many square feet of gypsum board are needed for a room that measures 12' x 16' with an 8' ceiling?

- A. 384 square feet**
- B. 640 square feet**
- C. 960 square feet**
- D. 1280 square feet**

To calculate the total square footage of gypsum board needed for a room that measures 12 feet by 16 feet with an 8-foot ceiling, you first need to determine the surface area that will be covered by the gypsum board. Here's how to break it down: 1. ****Calculate the perimeter of the room**:** The perimeter can be determined by adding all the sides of the room. For a room measuring 12 feet by 16 feet: - The length is 16 feet, and the width is 12 feet. - The perimeter (P) is calculated using the formula $P = 2(\text{length} + \text{width})$, which translates to: - $P = 2(16 + 12) = 2(28) = 56$ feet. 2. ****Calculate the total wall area**:** Each wall will be 8 feet high. Therefore, the area of the walls can be calculated as: - Wall area = perimeter \times height of the walls = 56 feet \times 8 feet = 448 square feet. 3. ****Calculate the area of the ceiling**:** The ceiling covers the entire floor area: - Ceiling area = length \times width = 12 feet

8. What soil compaction method utilizes high frequency vibration?

- A. Dynamic compaction**
- B. Vibration soil compaction**
- C. Static compaction**
- D. Impact compaction**

The method that utilizes high frequency vibration for soil compaction is vibration soil compaction. This technique involves using a vibrating plate or roller that applies a rapid oscillating motion to the soil. The high frequency vibrations rearrange the soil particles, allowing them to settle more densely together, which increases the overall stability and load-bearing capacity of the soil. Vibration soil compaction is particularly effective for granular soils, allowing for deeper penetration of the vibration and achieving a uniform compaction across the area being worked on. The method can be adjusted to different frequencies depending on the type of soil and the desired compaction, making it a versatile choice for various construction projects. Dynamic compaction, while related, involves dropping a heavy weight from a height to impact the ground, which is a different approach than using continuous vibration. Static compaction relies on weight alone without vibration to compress the soil, and impact compaction is focused on striking the surface rather than providing continuous vibration. These distinctions highlight the effectiveness of vibration soil compaction in achieving desired soil density through high frequency vibrations.

9. What term describes the amount of upward deflection necessary to counteract the downward deflection in concrete forms?

- A. Elevation**
- B. Camber**
- C. Arch**
- D. Counterbalance**

The term that describes the amount of upward deflection necessary to counteract the downward deflection in concrete forms is camber. Camber is specifically designed into concrete elements to compensate for anticipated deflections due to loads, supporting the structural integrity and aesthetic appearance of the construction. When concrete structures are poured, they naturally tend to deflect downward under load; camber introduces an upward curve to preemptively counter this effect. This practice ensures that the final construction remains level and performs as intended, as loads are applied over time. Properly incorporating camber into design considerations is crucial for maintaining long-term performance and safety of the structure, particularly in scenarios where uniformity and precision are desired, such as flooring systems and bridges.

10. In a stairway measuring 8 feet 2 inches with a riser height of 7 inches, how many risers are present?

- A. 12**
- B. 13**
- C. 14**
- D. 15**

To determine the number of risers in a stairway, you need to first convert the total height of the stairway from feet and inches to inches only. In this case, the stairway measures 8 feet 2 inches. There are 12 inches in a foot, so: $8 \text{ feet} = 8 \times 12 = 96 \text{ inches}$ Now, adding the additional 2 inches gives: $96 \text{ inches} + 2 \text{ inches} = 98 \text{ inches total height}$. Next, you divide the total height of the stairway by the height of each riser to find the number of risers. Since the riser height is given as 7 inches, the calculation is: $98 \text{ inches} \div 7 \text{ inches per riser} = 14 \text{ risers}$. Therefore, the stairway has 14 risers, making this the correct answer. This calculation reflects a practical method used in construction to ensure that stairways are built to standard height for safety and compliance with building codes.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://tnresidentialcontractor.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE