

# Technical Standards and Safety Authority (TSSA) G2 Practice Exam (Sample)

## Study Guide



**Everything you need from our exam experts!**

**Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.**

**ALL RIGHTS RESERVED.**

**No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.**

**Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.**

**SAMPLE**

# Table of Contents

|                                    |           |
|------------------------------------|-----------|
| <b>Copyright</b> .....             | <b>1</b>  |
| <b>Table of Contents</b> .....     | <b>2</b>  |
| <b>Introduction</b> .....          | <b>3</b>  |
| <b>How to Use This Guide</b> ..... | <b>4</b>  |
| <b>Questions</b> .....             | <b>5</b>  |
| <b>Answers</b> .....               | <b>8</b>  |
| <b>Explanations</b> .....          | <b>10</b> |
| <b>Next Steps</b> .....            | <b>16</b> |

SAMPLE

# Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

# How to Use This Guide

**This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:**

## 1. Start with a Diagnostic Review

**Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.**

## 2. Study in Short, Focused Sessions

**Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.**

## 3. Learn from the Explanations

**After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.**

## 4. Track Your Progress

**Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.**

## 5. Simulate the Real Exam

**Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.**

## 6. Repeat and Review

**Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.**

**There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!**

## **Questions**

SAMPLE

- 1. A commercial forced air furnace uses which form of heat transfer to heat a home?**
  - A. Radiant**
  - B. Conductive**
  - C. Convective**
  - D. Thermal**
- 2. What is a common issue that arises in gas appliances related to combustion?**
  - A. Excessive soot buildup**
  - B. Insufficient gas pressure**
  - C. Blocked air intake**
  - D. All of the above**
- 3. Which type of boiler is a scotch marine boiler?**
  - A. Two pass boiler**
  - B. Copper tube boiler**
  - C. Fire tube boiler**
  - D. Four pass water tube boiler**
- 4. A low water cut-off device on an automatically fired hot water heating boiler rated at 450,000 Btuh is:**
  - A. Not required if a limit control is installed**
  - B. Not required if it is installed in an industrial application**
  - C. Always required**
  - D. Required only in commercial applications.**
- 5. Which type of controller is essential for monitoring the temperature in heating systems?**
  - A. Thermostat**
  - B. Actuator**
  - C. Relay**
  - D. Sensor**

**6. What is the flame temperature for natural gas?**

- A. 1200 degrees Fahrenheit**
- B. 2400 degrees Fahrenheit**
- C. 3600 degrees Fahrenheit**
- D. 3800 degrees Fahrenheit**

**7. What is the formula representing Ohm's Law?**

- A. Resistance = current / voltage**
- B. Current = voltage / resistance**
- C. A potential of 2 volts across a resistance of 1 ohm will produce a current of 1 amp.**
- D. A potential of 1 volt across a resistance of 1 ohm will yield a flow of a 1 amp current.**

**8. A pressure regulator is a device that:**

- A. Measures gas flow**
- B. Reduces gas pressure from inlet to outlet**
- C. Increases gas pressure from inlet to outlet**
- D. Maintains a minimum outlet pressure**

**9. Net stack temperature is the flue gas temperature:**

- A. Downstream of the draft hood**
- B. Upstream of the draft hood**
- C. Plus the ambient temperature**
- D. Minus the ambient temperature**

**10. For a freestanding propane range in a large kitchen, what is the maximum length of the flexible connector?**

- A. 10 ft.**
- B. 6 ft**
- C. 4 ft.**
- D. 8 ft. if range is in the center of the kitchen**

## **Answers**

SAMPLE

1. C
2. D
3. C
4. C
5. A
6. C
7. B
8. B
9. D
10. B

SAMPLE

## **Explanations**

SAMPLE

**1. A commercial forced air furnace uses which form of heat transfer to heat a home?**

- A. Radiant**
- B. Conductive**
- C. Convective**
- D. Thermal**

A commercial forced air furnace primarily utilizes convective heat transfer to heat a home. This process involves the circulation of air, where the furnace heats the air within the system and then forces it through ductwork into various rooms. The heated air rises and disperses throughout the space, effectively warming the environment. Convective heat transfer is significant in this context because it depends on the movement of fluids (in this case, air) to distribute heat. The cycle continues as cooler air is drawn back into the furnace, where it is reheated, creating a constant flow of warm air. Understanding this mechanism is essential for grasping how forced air systems operate efficiently, ensuring a comfortable indoor climate. The other forms of heat transfer—radiant, conductive, and thermal—have different applications and mechanisms unrelated to the specific functioning of a forced air furnace.

**2. What is a common issue that arises in gas appliances related to combustion?**

- A. Excessive soot buildup**
- B. Insufficient gas pressure**
- C. Blocked air intake**
- D. All of the above**

The correct choice highlights that a variety of issues can simultaneously affect gas appliances in relation to combustion efficiency and safety. Excessive soot buildup occurs when fuel is not burned completely, often due to an inadequate air-to-fuel ratio, which can lead to reduced appliance efficiency and increased risk of flue blockage. Insufficient gas pressure can hinder the proper functioning of the appliance, leading to poor combustion and potentially hazardous conditions. Additionally, blocked air intakes can restrict the necessary airflow for combustion, resulting in the same incomplete combustion and its associated issues. Each of these problems is critical and can contribute to unsafe operating conditions in gas appliances, emphasizing the importance of regular maintenance and inspection to ensure optimal operational safety and efficiency.

### 3. Which type of boiler is a scotch marine boiler?

- A. Two pass boiler
- B. Copper tube boiler
- C. Fire tube boiler**
- D. Four pass water tube boiler

A scotch marine boiler is classified as a fire tube boiler. In fire tube boilers, hot gases produced from combustion pass through tubes that are surrounded by water, allowing heat to be transferred effectively to the water, which then generates steam. The scotch marine design specifically features a number of large-diameter fire tubes that run through the boiler's shell, creating a compact and efficient heating surface. This design is particularly efficient for producing steam or hot water due to its ability to generate a significant amount of steam in a relatively small footprint while being easy to maintain. Fire tube boilers, such as the scotch marine type, are typically found in applications that require a robust steam capacity with lower maintenance needs. The other types mentioned do not match the characteristics of a scotch marine boiler. For instance, a two pass boiler refers to a specific design where flue gases travel through the boiler in two passes, and while it may have a fire tube construction, it doesn't specifically pertain to the scotch marine type. Copper tube boilers, on the other hand, use copper tubes rather than steel tubes and have different thermal properties and applications. Finally, four-pass water tube boilers have a different operating principle, wherein water circulates through tubes that are heated by flue

### 4. A low water cut-off device on an automatically fired hot water heating boiler rated at 450,000 Btuh is:

- A. Not required if a limit control is installed
- B. Not required if it is installed in an industrial application
- C. Always required**
- D. Required only in commercial applications.

A low water cut-off device is a critical safety feature designed to prevent overheating or damage to a boiler when the water level drops below a safe operating threshold. For automatically fired hot water heating boilers, such as one rated at 450,000 Btuh, the presence of a low water cut-off is always mandated as it ensures that the boiler operates only under safe conditions. The requirement for a low water cut-off device stems from the need to provide safety and protection to both the system and its operators. This device interrupts the combustion process when the water level falls to a predetermined level, thereby preventing the boiler from running dry, which could lead to equipment failure or dangerous conditions such as exploding due to excessive heat. In contrast, other scenarios mentioned in the options do not negate the need for such a safety device. For instance, a limit control may manage the temperature and pressure within the boiler but does not address low water levels. Similarly, whether in commercial or industrial applications, the risk associated with low water levels remains significant. Thus, regardless of the application type, the requirement for a low water cut-off device remains consistent and is designed to ensure safety across all operating environments.

**5. Which type of controller is essential for monitoring the temperature in heating systems?**

**A. Thermostat**

**B. Actuator**

**C. Relay**

**D. Sensor**

A thermostat is essential for monitoring the temperature in heating systems because it is specifically designed to detect temperature changes and maintain a desired set point within the system. The primary function of a thermostat is to automatically control heating and cooling equipment to ensure that the temperature remains consistent and comfortable. When the temperature deviates from the set point, the thermostat signals the heating system to turn on or off as needed, thus playing a crucial role in maintaining the desired climate. While other components, such as actuators, relays, and sensors, play important roles in a heating system, they do not directly monitor and regulate temperature like a thermostat does. Actuators are responsible for controlling physical mechanisms, relays can serve as switches for electrical circuits, and sensors may provide readings of various environmental conditions but do not function as the temperature control interface that a thermostat embodies. Therefore, the thermostat is the most critical component for temperature monitoring in heating systems.

**6. What is the flame temperature for natural gas?**

**A. 1200 degrees Fahrenheit**

**B. 2400 degrees Fahrenheit**

**C. 3600 degrees Fahrenheit**

**D. 3800 degrees Fahrenheit**

The flame temperature for natural gas is approximately 3600 degrees Fahrenheit. This temperature is significant because it represents the maximum temperature that can be reached when natural gas burns in air, which is relevant for applications in heating systems and appliances. Understanding this temperature is crucial when designing and maintaining equipment that uses natural gas, as it ensures safe operation and optimal efficiency. In terms of combustion processes and fuel selection, knowing the flame temperature helps evaluate what materials can withstand such heat and informs safety protocols during installation and operation. The other temperature options provided are either lower or higher than what is characteristic for natural gas combustion, making them less applicable in this context.

## 7. What is the formula representing Ohm's Law?

- A. Resistance = current / voltage
- B. Current = voltage / resistance**
- C. A potential of 2 volts across a resistance of 1 ohm will produce a current of 1 amp.
- D. A potential of 1 volt across a resistance of 1 ohm will yield a flow of a 1 amp current.

Ohm's Law is a fundamental principle in electrical engineering that describes the relationship between voltage, current, and resistance in an electrical circuit. The correct representation of Ohm's Law is represented by the formula that states current is equal to voltage divided by resistance. This relationship can be mathematically expressed as:  $I = \frac{V}{R}$  where  $I$  is the current in amperes (A),  $V$  is the voltage in volts (V), and  $R$  is the resistance in ohms ( $\Omega$ ). This formula highlights how current will increase if either the voltage is increased or the resistance is decreased, illustrating a direct relationship between these variables. The other options contain information related to Ohm's Law but are not the formula itself. For example, while the statement regarding a potential of 1 volt across a resistance of 1 ohm yielding a flow of 1 amp current is an application of Ohm's Law, it does not represent the formula directly. Understanding this principle is crucial for anyone working in electrical systems, as it forms the foundation for analyzing and designing circuits.

## 8. A pressure regulator is a device that:

- A. Measures gas flow
- B. Reduces gas pressure from inlet to outlet**
- C. Increases gas pressure from inlet to outlet
- D. Maintains a minimum outlet pressure

A pressure regulator is specifically designed to reduce the pressure of gas from the inlet to a desired outlet level. This is crucial in many applications where maintaining a consistent and safe pressure is necessary for operational efficiency and safety. The role of a pressure regulator is to adjust the incoming higher pressure to a controlled, lower pressure that can be safely used in a system or process. It ensures that the equipment downstream operates optimally without the risk of over-pressurization, which could lead to system failures or safety hazards. In this context, the other options focus on functions that are not characteristic of a standard pressure regulator. For instance, while some devices measure gas flow, that is not the fundamental function of a pressure regulator. Similarly, a regulator does not increase gas pressure; rather, it serves to reduce it. Lastly, while maintaining pressure can be part of the functionality of certain types of regulators, the primary purpose remains the reduction of pressure from the inlet to the outlet. Therefore, the correct answer reflects the essential role of a pressure regulator in managing gas pressure safely and effectively.

**9. Net stack temperature is the flue gas temperature:**

- A. Downstream of the draft hood**
- B. Upstream of the draft hood**
- C. Plus the ambient temperature**
- D. Minus the ambient temperature**

The net stack temperature refers to the effective temperature of the flue gases as they exit a heating appliance, taking into account the influence of ambient conditions. It is calculated by subtracting the ambient air temperature from the measured flue gas temperature. This allows for a more accurate representation of the heat being exhausted compared to the outside environment, which is crucial for assessing the efficiency of the heating appliance. In this context, measuring the flue gas temperature alone does not provide a full picture of the heat loss or efficiency. By considering the ambient temperature, the net stack temperature helps to evaluate the actual thermal performance of the system. The subtraction accounts for the cooling effect of the surrounding air, leading to a real-time understanding of heat being expelled. Thus, choosing the correct option reflects an understanding of how to accurately assess the thermal dynamics involved in gas appliances, ensuring safe operation and efficiency evaluations.

**10. For a freestanding propane range in a large kitchen, what is the maximum length of the flexible connector?**

- A. 10 ft.**
- B. 6 ft**
- C. 4 ft.**
- D. 8 ft. if range is in the center of the kitchen**

The correct choice is based on the safety and installation standards set forth by regulations regarding the use of flexible connectors for gas appliances. For a freestanding propane range, the maximum length specified for the flexible connector is typically 6 feet. This limitation is implemented to ensure that the connector is not excessively long, which could lead to potential hazards such as kinks, increased resistance to gas flow, or difficulties in maintaining a proper seal against gas leaks. Flexible connectors are designed to accommodate slight movements of the appliance while ensuring that the integrity of the gas supply is maintained. By keeping the length to a maximum of 6 feet, it allows for effective maneuverability without significant risk. This length restriction also promotes a safer installation, as longer connectors could create complications if the appliance needs to be moved for cleaning or maintenance. While options suggesting lengths longer than 6 feet could seem practical in varying kitchen sizes, they do not adhere to the established safety guidelines, which prioritize both operational efficiency and the safety of individuals in the kitchen environment. Hence, choosing the 6-foot length aligns with the standards for proper installation, ensuring safety and compliance in the kitchen setting.

# Next Steps

**Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.**

**As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.**

**If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at [hello@examzify.com](mailto:hello@examzify.com).**

**Or visit your dedicated course page for more study tools and resources:**

**<https://tssag2.examzify.com>**

**We wish you the very best on your exam journey. You've got this!**

**SAMPLE**