Tactical Combat Casualty Care (TCCC) - Deployed Medic (Tier 1) Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. At what altitude might casualties benefit from supplemental oxygen?
 - A. At sea level
 - B. At 5,000 feet
 - C. At 10,000 feet
 - D. At 15,000 feet
- 2. What should be done with a casualty who exhibits signs of anaphylaxis?
 - A. Administer antihistamines as the first response
 - B. Wait for medical assistance to arrive
 - C. Administer an epinephrine auto-injector if available
 - D. Encourage the casualty to drink fluids
- 3. What does the AVPU method assess in a casualty?
 - A. Respiratory effort
 - **B.** Level of consciousness
 - C. Body temperature
 - D. Blood sugar levels
- 4. What are the three phases of TCCC?
 - A. Primary care, secondary care, and transport care
 - B. Care under fire, tactical field care, and tactical evacuation care
 - C. Emergency response, medical treatment, and evacuation
 - D. Rapid assessment, field treatment, and surgical care
- 5. When performing CPR in a tactical scenario, what must a medic consider first?
 - A. The casualty's breathing pattern
 - B. The safety of the environment
 - C. The availability of equipment
 - D. The casualty's level of consciousness

- 6. How should a medic respond to hypothermia in a casualty during TCCC?
 - A. Leave the casualty exposed to air to breathe
 - B. Wrap in a wet blanket to stimulate heat
 - C. Cover the casualty to retain body heat and provide warm fluids if conscious
 - D. Move the casualty to a cooler area for assessment
- 7. What is the recommended approach for a medic when performing an evacuation?
 - A. Act independently without coordination
 - B. Coordinate with the evacuation team
 - C. Prioritize speed over safety
 - D. Move the casualty alone
- 8. What should be performed on casualties with torso trauma who have no pulse during TACEVAC?
 - A. Bilateral needle decompressions
 - B. Advanced airway management
 - C. Cardiac compressions
 - D. Fluid resuscitation
- 9. Where are red blood cells made in bones?
 - A. In the periosteum
 - B. In the compact bone
 - C. In the bone marrow
 - D. In the spongy bone
- 10. What is a medic's responsibility during tactical combat situations?
 - A. To engage in combat
 - B. To provide care while remaining aware of the tactical environment
 - C. To assess whether to treat based on the soldier's rank
 - D. To remain passive until higher authority directs action

Answers

- 1. C 2. C

- 2. C 3. B 4. B 5. B 6. C 7. B 8. A 9. C 10. B

Explanations

1. At what altitude might casualties benefit from supplemental oxygen?

- A. At sea level
- B. At 5,000 feet
- C. At 10,000 feet
- D. At 15,000 feet

Supplemental oxygen becomes beneficial at higher altitudes primarily due to decreased atmospheric pressure and the corresponding reduction in the partial pressure of oxygen available for respiration. At around 10,000 feet, many individuals start experiencing the effects of altitude sickness, including hypoxia, which can hinder physical performance and cognitive function. At this altitude, the ambient oxygen concentration is sufficiently low that some individuals may struggle to maintain adequate oxygen saturation levels in the blood. Administering supplemental oxygen at this point can help prevent hypoxia and optimize oxygen delivery to the tissues, improving overall performance and reducing the risk of altitude-related illness. As altitude increases further, such as at 15,000 feet, the need for supplemental oxygen becomes even more critical. However, 10,000 feet is the recognized threshold where symptoms and decreased performance can begin to manifest, making it a key point for intervention with supplemental oxygen.

2. What should be done with a casualty who exhibits signs of anaphylaxis?

- A. Administer antihistamines as the first response
- B. Wait for medical assistance to arrive
- C. Administer an epinephrine auto-injector if available
- D. Encourage the casualty to drink fluids

In the case of a casualty exhibiting signs of anaphylaxis, administering an epinephrine auto-injector is the most critical and effective immediate response. Anaphylaxis is a severe, potentially life-threatening allergic reaction that can cause rapid onset symptoms such as difficulty breathing, swelling, and a drop in blood pressure. Epinephrine works quickly to reverse these symptoms by constricting blood vessels to increase blood pressure, relaxing the muscles in the airways to improve breathing, and reducing swelling. Timely administration of epinephrine is crucial because delays can result in worsening symptoms and increased risk of morbidity or mortality. Options such as waiting for medical assistance can lead to further deterioration of the casualty's condition, as anaphylaxis can escalate rapidly. Likewise, while antihistamines may serve to manage mild allergic reactions, they are not effective for treating anaphylaxis and should not be the first intervention. Encouraging fluid intake is also not an appropriate response in cases of anaphylaxis, as the condition primarily requires immediate intervention to address the acute symptoms rather than supportive measures like hydration.

3. What does the AVPU method assess in a casualty?

- A. Respiratory effort
- **B.** Level of consciousness
- C. Body temperature
- D. Blood sugar levels

The AVPU method is a rapid assessment tool used to evaluate a casualty's level of consciousness. The acronym AVPU stands for: -**A**: Alert - **V**: Verbal response - **P**: Painful response - **U**: Unresponsive This system helps medics quickly determine how responsive and aware a person is following a potential head injury or other event affecting their consciousness. By assessing whether the casualty is fully alert, can respond verbally, reacts to painful stimuli, or is unresponsive, medical personnel can gauge the severity of the patient's condition and make informed decisions about further treatment and intervention. In contrast, the other options focus on different vital signs or parameters. Respiratory effort relates to how well the casualty is breathing, body temperature monitors for signs of infection or hypothermia, and blood sugar levels are important, particularly for diabetic emergencies. While all of these are crucial assessments in medical care, the AVPU method specifically addresses the level of consciousness.

4. What are the three phases of TCCC?

- A. Primary care, secondary care, and transport care
- B. Care under fire, tactical field care, and tactical evacuation care
- C. Emergency response, medical treatment, and evacuation
- D. Rapid assessment, field treatment, and surgical care

The three phases of Tactical Combat Casualty Care (TCCC) are care under fire, tactical field care, and tactical evacuation care. This framework is designed to guide medics in the management of casualties during combat situations while maintaining their own safety and operational effectiveness. Care under fire is the initial phase where the medic provides care while still under threat. It emphasizes the need to control life-threatening hemorrhage quickly, primarily through methods such as tourniquet application, while ensuring the medic remains protected from enemy fire. Tactical field care follows once the situation is stabilized and the immediate threat has diminished. During this phase, the casualty can receive more comprehensive assessment and treatment. This includes addressing airway management, breathing, circulation, and any other critical interventions that may be necessary before evacuation. Lastly, tactical evacuation care encompasses the treatment given during the transport of the casualty from the point of injury to a higher level of medical care. This phase often involves maintaining the casualty's stability while en route, ensuring that any interventions provided during the previous phases are supported and, if necessary, continued. This structure not only prioritizes medical interventions but also the safety and tactical considerations necessary in a combat environment, making option B the most comprehensive and applicable answer.

- 5. When performing CPR in a tactical scenario, what must a medic consider first?
 - A. The casualty's breathing pattern
 - B. The safety of the environment
 - C. The availability of equipment
 - D. The casualty's level of consciousness

In a tactical scenario, the first consideration for a medic performing CPR is the safety of the environment. This is crucial because if the medic does not ensure their own safety and that of the casualty, they may become a victim themselves, which could exacerbate the situation. The tactical environment may present various hazards, such as ongoing combat, unstable structures, or exposure to hostile threats. Before initiating any medical intervention, it's imperative to assess the surroundings to mitigate risks and ensure that the medic can operate effectively without putting themselves or others in danger. Only after establishing a safe area can the medic focus on the appropriate medical actions, such as assessing the casualty's breathing pattern, consciousness, or the need for equipment. In tactical medicine, the emphasis on safety helps maintain the effectiveness and readiness of the medic to provide care, emphasizing the importance of situational awareness in life-threatening scenarios.

- 6. How should a medic respond to hypothermia in a casualty during TCCC?
 - A. Leave the casualty exposed to air to breathe
 - B. Wrap in a wet blanket to stimulate heat
 - C. Cover the casualty to retain body heat and provide warm fluids if conscious
 - D. Move the casualty to a cooler area for assessment

The appropriate response to hypothermia in a casualty involves actions that help to preserve body heat and restore normal body temperature. Covering the casualty allows for the retention of their body heat, which is crucial in preventing further heat loss. Additionally, providing warm fluids, if the casualty is conscious and able to drink, can help to increase their internal body temperature. This method addresses both immediate symptoms and targets the underlying issue of hypothermia. Utilizing a wet blanket would actually cause further heat loss, as the moisture would cool the body rather than warm it. Leaving a casualty exposed to air does not provide any benefits in terms of warming and can increase the risk of further hypothermia. Moving the casualty to a cooler area is counterproductive, as the priority in cases of hypothermia is to insulate and warm the individual, not expose them to more cold conditions.

7. What is the recommended approach for a medic when performing an evacuation?

- A. Act independently without coordination
- B. Coordinate with the evacuation team
- C. Prioritize speed over safety
- D. Move the casualty alone

The recommended approach for a medic when performing an evacuation is to coordinate with the evacuation team. This collaboration is crucial to ensure the safety and effectiveness of the operation. Coordinating with the evacuation team allows for the optimization of resources, clear communication regarding the casualty's condition, and planning for the safest route and method of transport. By working together, the medic and the evacuation team can better manage the situation, assess threats, and implement measures to protect both the casualty and all personnel involved. Utilizing a coordinated approach also fosters an environment where everyone is aware of their roles and responsibilities, which is important in high-stress situations commonly encountered in combat settings. Effective coordination helps to minimize response times while maintaining safety, allowing the medic to focus on providing necessary care during transit.

8. What should be performed on casualties with torso trauma who have no pulse during TACEVAC?

- A. Bilateral needle decompressions
- B. Advanced airway management
- C. Cardiac compressions
- D. Fluid resuscitation

In the context of Tactical Combat Casualty Care (TCCC) during Tactical Evacuation (TACEVAC), casualties with torso trauma who are in a state of pulselessness require immediate intervention to address potential life-threatening conditions such as tension pneumothorax, which can occur from injuries to the chest. Performing bilateral needle decompressions is crucial in this scenario because it can relieve pressure in the pleural space, allowing for lung re-expansion and restoration of adequate oxygenation. Bilateral needle decompressions target the thoracic cavity, which is essential in cases where there is significant respiratory distress or an inability to ventilate due to an obstructed airway from pleural pressure. By decompressing both sides, the procedure can alleviate pressure stresses on the heart and major blood vessels, potentially restoring circulation and improving the casualty's chance of survival. In such situations, addressing airway management, performing cardiac compressions, or initiating fluid resuscitation are important but might not specifically address the immediate life threat posed by possible tension pneumothorax in a traumatic torso injury where the casualty is unresponsive and pulseless. Thus, the emphasis on bilateral needle decompression as a priority intervention in this context is critical for managing the trauma effectively.

9. Where are red blood cells made in bones?

- A. In the periosteum
- B. In the compact bone
- C. In the bone marrow
- D. In the spongy bone

Red blood cells are produced in the bone marrow, which is a specialized tissue found within the cavities of certain bones. The bone marrow is a critical component of the hematopoietic system, responsible for the production of not only red blood cells but also white blood cells and platelets. This process, known as hematopoiesis, occurs primarily in the red marrow, which is found in the medullary cavities of certain bones, particularly in the flat bones such as the pelvis, sternum, and skull, as well as in the ends of long bones. As the body ages, some red marrow can be replaced by yellow marrow, which is primarily composed of fat and serves as a reserve for energy. Understanding the location of red blood cell production is essential in medical settings, particularly in cases of injury or disease that may affect blood volume and overall oxygenation in the body.

10. What is a medic's responsibility during tactical combat situations?

- A. To engage in combat
- B. To provide care while remaining aware of the tactical environment
- C. To assess whether to treat based on the soldier's rank
- D. To remain passive until higher authority directs action

In tactical combat situations, a medic's primary responsibility is to provide care while remaining aware of the tactical environment. This is essential because the battlefield is dynamic and poses continuous threats not only to the injured individuals but also to the medic. Being situationally aware allows medics to effectively perform life-saving procedures while also ensuring their own safety and that of the team. The ability to assess and prioritize patient care amidst ongoing combat conditions is critical for a medic. They must be able to quickly determine when and where to provide care, potentially moving to safer locations or finding cover as necessary. Medics are trained to perform their duties under pressure while being aware of other tactical elements, such as enemy presence and the overall operational situation. This proactive approach ensures that medics can treat casualties effectively and efficiently, maximizing the potential for positive outcomes while safeguarding themselves and their fellow soldiers.