

T-6B Primary Flight Training - Contact Stage 2 Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What action should be taken if maintaining pattern interval becomes impossible during approach?**
 - A. Continue landing**
 - B. Perform a go-around**
 - C. Waveoff**
 - D. Adjust power settings**
- 2. In a non-radar environment, emergency voice reports of an immediate or serious nature are preceded by which word?**
 - A. MAYDAY**
 - B. EMERGENCY**
 - C. ALERT**
 - D. HELP**
- 3. True or False: A high sink rate during a final approach can lead to a stall or hard landing.**
 - A. True**
 - B. False**
 - C. Depends on the descent rate**
 - D. None of the above**
- 4. What type of landing error results from excessive altitude during the flare phase?**
 - A. Low approach**
 - B. High flare**
 - C. Unstable approach**
 - D. Controlled descent**
- 5. What action might cause ballooning errors during landing?**
 - A. Failure to follow approach speed**
 - B. Rapidly raising the nose too early**
 - C. Entering a go-around too late**
 - D. Not using enough descent rate**

6. Which of the following is NOT a phase of landing?

- A. Landing transition**
- B. Flare and touchdown**
- C. Landing roll**
- D. Centerline control**

7. Which method is used to compare energy state to multiple airfields?

- A. DME method**
- B. Altitude method**
- C. Energy analysis**
- D. Speed calculation**

8. What effect does a high flare landing error typically have on an aircraft?

- A. Improved landing speed**
- B. Inability to flare normally due to excess altitude**
- C. Reduced landing distance**
- D. Increased gear stress**

9. When executing a Precautionary Emergency Landing, what speed should be maintained during a necessary climb?

- A. 120 KIAS**
- B. 140 KIAS**
- C. 160 KIAS**
- D. 180 KIAS**

10. What does excessive pitch during the flare typically result in?

- A. A hard landing**
- B. A floating landing**
- C. A high flare landing error**
- D. A go-around**

Answers

SAMPLE

1. C
2. A
3. A
4. B
5. B
6. D
7. B
8. B
9. B
10. C

SAMPLE

Explanations

SAMPLE

1. What action should be taken if maintaining pattern interval becomes impossible during approach?

- A. Continue landing**
- B. Perform a go-around**
- C. Waveoff**
- D. Adjust power settings**

When maintaining pattern interval becomes impossible during an approach, the appropriate action is to execute a waveoff. A waveoff is a command or decision made to discontinue the landing approach and climb away from the runway. This action is crucial for ensuring safety, especially in situations where the spacing between aircraft becomes compromised. If safety cannot be maintained due to a lack of separation, executing a waveoff allows the pilot to gain altitude, reassess the situation, and rejoin the traffic pattern when it is safe to do so. While continuing with the landing or performing a go-around may seem like alternatives, they do not address the situation where maintaining the proper interval is deemed impossible. Adjusting power settings alone would not resolve the underlying issue of spacing and could lead to more severe problems. A waveoff represents a clear and decisive action to ensure safety in the approach phase.

2. In a non-radar environment, emergency voice reports of an immediate or serious nature are preceded by which word?

- A. MAYDAY**
- B. EMERGENCY**
- C. ALERT**
- D. HELP**

In a non-radar environment, emergency voice reports of an immediate or serious nature are correctly preceded by the word "MAYDAY." This term is universally recognized in aviation as a distress signal. It indicates that the pilot is experiencing a grave emergency that requires immediate assistance. Using "MAYDAY" alerts other aircraft and air traffic controllers to the severity of the situation, prompting them to prioritize communication and aid for the distressed aircraft. The word "MAYDAY" is not used lightly; its usage is strictly reserved for life-threatening emergencies, ensuring that it captures the attention of those who hear it. This standardization helps maintain clarity during critical situations. While the other options might convey a sense of urgency, they lack the specific, formal recognition associated with "MAYDAY." "EMERGENCY" does indicate a serious situation, but it does not convey the immediate danger implied by "MAYDAY." "ALERT" and "HELP" are not established terms within cockpit communications, making them less effective in summoning immediate assistance. Thus, "MAYDAY" stands as the appropriate choice for indicating a dire emergency in non-radar communication scenarios.

3. True or False: A high sink rate during a final approach can lead to a stall or hard landing.

- A. True**
- B. False**
- C. Depends on the descent rate**
- D. None of the above**

A high sink rate during the final approach phase of flight is indeed critical and can lead to undesirable outcomes such as a stall or hard landing. When an aircraft descends rapidly toward the runway, it approaches a condition where the angle of attack could become excessive if the pilot does not manage airspeed and descent appropriately. If the aircraft's airspeed is not sufficient to maintain lift while experiencing this high rate of descent, the wing can stall. This stall situation occurs when the angle of attack exceeds the critical angle, resulting in a loss of lift and potentially catastrophic consequences during landing. Additionally, a high sink rate may also lead to a hard landing. If the aircraft descends too quickly without proper control of pitch and airspeed, the impact with the runway can be far more forceful than normalized landing conditions, which can damage the aircraft and compromise passenger safety. Thus, recognizing the risks associated with a high sink rate and emphasizing correct control and descent techniques during the final approach is essential for safe flying practices.

4. What type of landing error results from excessive altitude during the flare phase?

- A. Low approach**
- B. High flare**
- C. Unstable approach**
- D. Controlled descent**

A high flare occurs when the pilot maintains a higher-than-necessary altitude during the flare phase of landing. This is characterized by the aircraft being too high as it approaches the runway, which can lead to various complications during the landing process. During the flare, the pilot begins to round out the approach to transition from descent to landing, and if excessive altitude is maintained, it can lead to a situation where the aircraft may float down the runway or require a longer landing distance. This can ultimately result in a missed landing spot or an unstable landing condition, as the pilot may have to make abrupt adjustments to touch down safely. By understanding the dynamics of the flare phase and recognizing the potential for a high flare, pilots can better manage their descent profile, ensuring a smoother and more controlled landing.

5. What action might cause ballooning errors during landing?

- A. Failure to follow approach speed
- B. Rapidly raising the nose too early**
- C. Entering a go-around too late
- D. Not using enough descent rate

Raising the nose too early during the landing phase can contribute to ballooning errors. Ballooning occurs when the aircraft begins to lose its proper descent trajectory, causing it to climb instead of continuing on a controlled approach to the runway. When the nose is raised prematurely, the aircraft may gain altitude instead of maintaining the ideal glide path. This can result in an increase in lift, which counteracts the intended descent rate. Proper timing and control of the aircraft's pitch are crucial to ensuring a smooth landing; thus, having the correct nose attitude at the appropriate moments is vital for a successful touchdown. In this context, maintaining an appropriate approach speed, timing a go-around correctly, and ensuring an adequate descent rate are also important to achieving a stable landing. However, they do not directly result in the immediate ballooning effect that arises from an upward pitch change executed too soon.

6. Which of the following is NOT a phase of landing?

- A. Landing transition
- B. Flare and touchdown
- C. Landing roll
- D. Centerline control**

The correct answer highlights "Centerline control" as not being a recognized phase of landing. In the context of landing procedures, specific phases include the landing transition, flare and touchdown, and the landing roll itself. Each of these phases describes a segment of the landing process, focusing on different aspects of maneuvering the aircraft safely to the ground. The landing transition refers to the phase where the aircraft adjusts from the approach configuration to a stable descent for landing. The flare and touchdown are critical steps where the pilot raises the nose of the aircraft to reduce descent rate just before touching down, ensuring a smooth landing. The landing roll encompasses the period after touchdown when the aircraft decelerates and comes to a complete stop, which is essential for the safety and control of the aircraft on the runway. On the other hand, while "centerline control" is crucial for maintaining proper alignment with the runway during landing, it does not constitute a distinct phase of the landing process. It is more of a technique or skill necessary during the landing phases to ensure the aircraft remains centered on the runway while descending and after touchdown. Thus, it is appropriately categorized as important but not an actual phase of the landing itself.

7. Which method is used to compare energy state to multiple airfields?

- A. DME method**
- B. Altitude method**
- C. Energy analysis**
- D. Speed calculation**

The method used to compare energy states to multiple airfields is associated with understanding how altitude impacts the energy of the aircraft. Higher altitudes generally correlate with increased potential energy due to the aircraft's position relative to the ground. By utilizing the altitude method, pilots can assess the energy available to them for different airfield approaches, particularly regarding how altitude affects glide performance and engine-out scenarios. In flight training, understanding the relationship between altitude and energy management is crucial for safe landing approaches, as it influences decisions about approach angles and required airspeed. The other methods, while useful in their own contexts, do not specifically focus on the energy state relative to altitude in a way that compares multiple airfields effectively.

8. What effect does a high flare landing error typically have on an aircraft?

- A. Improved landing speed**
- B. Inability to flare normally due to excess altitude**
- C. Reduced landing distance**
- D. Increased gear stress**

A high flare landing error typically results in the aircraft being at an excessive altitude when attempting to flare for landing. This can compromise the pilot's ability to effectively control the descent rate and touchdown attitude of the aircraft. When the airplane is too high during the flare, it may lead to a prolonged floating effect above the runway, making it challenging to settle it down properly for a safe landing. The pilot may either run out of runway or have to perform a more aggressive descent to land, which can lead to a hard landing or a missed approach. In contrast, other options do not align with the consequences of a high flare error. For instance, improved landing speed is not a factor of high flares since the aircraft's speed management is compromised in this scenario. A reduced landing distance is also misleading, as the extended altitude typically requires a longer distance for the aircraft to descend and align properly for touchdown. Finally, while gear stress could potentially be a consideration in a hard landing scenario, it is not a direct consequence of simply having excess altitude during the flare. Therefore, the primary and most crucial effect of a high flare landing error is the inability to flare normally due to the aircraft being at an unsafe height above the runway.

9. When executing a Precautionary Emergency Landing, what speed should be maintained during a necessary climb?

- A. 120 KIAS**
- B. 140 KIAS**
- C. 160 KIAS**
- D. 180 KIAS**

When executing a Precautionary Emergency Landing (PEL), maintaining a specific airspeed during a necessary climb is crucial for ensuring adequate performance and safety. In this case, sustaining a speed of 140 KIAS (Knots Indicated Airspeed) provides a balance between maneuverability and performance. At 140 KIAS, the aircraft is able to maintain a sufficient margin above stall speed while still allowing for effective control and responsiveness during the climb. This speed is within the operational envelope of the T-6B, enabling the pilot to manage the aircraft's performance capabilities effectively if a climb is required after establishing the PEL. Other speeds, such as 120 KIAS, could potentially limit the aircraft's climb performance, while higher speeds like 160 KIAS or 180 KIAS might detract from the ability to control the descent and maneuver the aircraft effectively as it approaches the emergency landing. Therefore, 140 KIAS is the optimal choice for maintaining a safe and controlled ascent in this scenario.

10. What does excessive pitch during the flare typically result in?

- A. A hard landing**
- B. A floating landing**
- C. A high flare landing error**
- D. A go-around**

Excessive pitch during the flare is characterized by raising the nose of the aircraft too high as it approaches touchdown. This action can lead to a high flare landing error, where the aircraft may lose effective control of descent rate and energy management just before landing. When the nose is too high, the aircraft may float along the runway for an extended distance before touching down. This floating can lead to complications, as the pilot may struggle to maintain control and could end up landing farther down the runway than intended. This situation often compromises the aircraft's ability to land safely and can result in an ineffective touchdown. It's essential for pilots to maintain a proper attitude during the flare to ensure a smooth and controlled landing.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://t6bcontactstage2.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE