T-6 Formation Checkride Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. What calls are required for aircraft number 1 and number 2 during an instrument trail departure?
 - A. Upon takeoff and when initiating turns
 - B. When reaching even 1,000's of ft. and when initiating heading changes
 - C. At 5,000 ft and when landing
 - D. Every 10 minutes
- 2. What does the term "joker fuel" refer to in formation flying?
 - A. The fuel level at which a lead change must occur
 - B. The amount of fuel for the return trip
 - C. The minimum fuel required to complete a flight
 - D. A bonus fuel reserve
- 3. Which situation does NOT require a KIO call in ET?
 - A. Busting the 3/9 line
 - B. Violating the 300 ft. safety bubble
 - C. Dropping below 100 KIAS
 - D. Maintaining altitude
- 4. What altitude block is typically requested for Clearance and Delivery?
 - A. 500 ft block
 - **B.** 1,000 ft block
 - C. 1,500 ft block
 - **D. 2,000 ft block**
- 5. What is expected from wing in terms of position during the formation flight?
 - A. Maintain a loose, flexible position
 - B. Stay close to number 1 but not too close
 - C. Be in position and on frequency
 - D. Adjust position based on weather conditions

- 6. What is the vertical spacing for number 2 in echelon formation?
 - A. Below lead only
 - B. Co-altitude
 - C. Above lead
 - D. At least 1000 ft lower
- 7. What is the minimum takeoff spacing between aircraft in an instrument trail departure?
 - A. No less than 10 seconds
 - B. No less than 20 seconds
 - C. No less than 15 seconds
 - D. No less than 25 seconds
- 8. If an aircraft is NORDO, where will it orbit and at what airspeed?
 - A. Center radial/DME at 200 KIAS
 - B. Center radial/DME at 180 KIAS
 - C. Highlight radial/DME at 150 KIAS
 - D. Outward radial/DME at 210 KIAS
- 9. What is the recommended action if number 2 cannot maintain visual contact with number 1?
 - A. Continue formation flying
 - B. Break off and rejoin later
 - C. Adjust altitude to gain visual contact
 - D. Initiate a lead change
- 10. When is it crucial to utilize visual signals during a formation flight?
 - A. During low-level maneuvers
 - B. When radio transmissions may interfere
 - C. In case of emergency
 - D. When flying at high altitudes

Answers

- 1. B 2. A 3. D

- 3. D 4. B 5. C 6. B 7. B 8. B 9. B 10. B

Explanations

1. What calls are required for aircraft number 1 and number 2 during an instrument trail departure?

- A. Upon takeoff and when initiating turns
- B. When reaching even 1,000's of ft. and when initiating heading changes
- C. At 5,000 ft and when landing
- D. Every 10 minutes

The correct answer focuses on the communication protocols during an instrument trail departure, which are crucial for maintaining safe separation between aircraft in a formation. During this type of departure, aircraft number 1 and number 2 are required to make calls when they reach even numbered thousands of feet, indicating their altitude, as well as when initiating any heading changes. This communication is vital for coordination and situational awareness, as it allows both pilots to monitor each other's progress and compliance with air traffic control instructions. By calling out at each even thousand feet, both aircraft maintain a structured and clear sequence of their vertical positioning, enabling effective separation and preventing potential altitude conflicts. Similarly, notifying when heading changes occur helps to ensure that both pilots are aligned in their navigation intentions, which is particularly important in a formation context where tight adherence to planned routes and altitudes is necessary. The other options do not reflect the standard procedures required during such departures. For instance, calling upon takeoff and when initiating turns may not capture the critical altitude reporting aspect, while the suggestion of calling at 5,000 feet and upon landing misses the necessary continuous communication throughout the departure phase. Lastly, arbitrary calls every 10 minutes would not provide the timely updates needed for effective formation flying and would likely lead to

2. What does the term "joker fuel" refer to in formation flying?

- A. The fuel level at which a lead change must occur
- B. The amount of fuel for the return trip
- C. The minimum fuel required to complete a flight
- D. A bonus fuel reserve

The term "joker fuel" in formation flying specifically refers to a predetermined fuel level at which a lead change must occur. This is an important aspect of formation flying as it ensures that the flight maintains adequate fuel reserves for the mission while allowing for efficient leadership transitions. By establishing a joker fuel level, pilots can effectively manage the workload during the flight and ensure that the lead aircraft has enough fuel for continued operations or any necessary maneuvers. Understanding the significance of joker fuel helps maintain safety and mission effectiveness. When the lead aircraft approaches this fuel level, a pre-coordinated lead change can take place, allowing for smoother dynamics within the formation and ensuring that the formation as a whole can continue to operate effectively. Thus, recognizing the joker fuel helps pilots prioritize fuel management in conjunction with tactical maneuvers.

3. Which situation does NOT require a KIO call in ET?

- A. Busting the 3/9 line
- B. Violating the 300 ft. safety bubble
- C. Dropping below 100 KIAS
- D. Maintaining altitude

In the context of formation flying, a KIO (Knock It Off) call is employed to terminate an exercise or maneuver due to safety concerns or potential issues within the formation. The purpose of a KIO call is to ensure the safety of all aircraft involved. Maintaining altitude is a stable situation that does not present immediate danger or conflict within the formation. It indicates that the aircraft is operating as expected and maintaining controlled flight, which does not necessitate a KIO call. This is crucial for ensuring that all pilots can focus on maintaining formation integrity without unnecessary alarms or interruptions. In contrast, busting the 3/9 line, violating the 300 ft. safety bubble, and dropping below 100 KIAS are all situations that can compromise safety during formation flying, as they may lead to potential collisions or loss of control. Each of these scenarios requires immediate attention and a KIO call to halt operations and address the unsafe conditions. Maintaining altitude represents a situation where everything is functioning correctly, allowing for a continuation of the flight without the need for a KIO call.

4. What altitude block is typically requested for Clearance and Delivery?

- A. 500 ft block
- **B. 1,000 ft block**
- C. 1,500 ft block
- D. 2,000 ft block

The 1,000 ft block is typically requested for Clearance and Delivery because it provides a manageable and standardized altitude separation for aircraft. This altitude block reduces the complexity of air traffic control when it comes to coordinating departures and arrivals. By using a 1,000 ft block, it allows pilots to easily transition from tower-controlled operations to enroute flight while maintaining safe vertical separation from other traffic. Additionally, the 1,000 ft increment aligns with normal aircraft operational practices in the National Airspace System, which helps facilitate smoother traffic flow. This standardized approach enhances communication between pilots and air traffic controllers, ensuring clarity in altitude assignments and maintaining safety in busy airspace.

5. What is expected from wing in terms of position during the formation flight?

- A. Maintain a loose, flexible position
- B. Stay close to number 1 but not too close
- C. Be in position and on frequency
- D. Adjust position based on weather conditions

In formation flight, the wingman is expected to maintain a specific position relative to the flight leader (referred to as number 1) while also communicating effectively. Being "in position" means that the wingman is flying in the designated area that has been agreed upon for safety and effectiveness. This ensures that the flight can maneuver cohesively and efficiently, enhancing the capabilities of the formation as a whole. Staying "on frequency" indicates that the wingman must be tuned into the correct communications frequency to receive instructions and provide updates, maintaining situational awareness. This is crucial for coordination, especially during maneuvers or changes in flight profile. Other considerations like staying flexible or adjusting based on weather conditions are important aspects of flying, but they don't capture the essence of the wingman's primary responsibilities during formation flight, which revolves around position and communication with the formation leader. Therefore, being in position and on frequency directly addresses the essential elements needed for successful and safe formation flying.

6. What is the vertical spacing for number 2 in echelon formation?

- A. Below lead only
- **B.** Co-altitude
- C. Above lead
- D. At least 1000 ft lower

In an echelon formation, the primary objective is to maintain effective visual communication and tactical positioning relative to the lead aircraft. Number 2 in an echelon formation flies at co-altitude with the lead aircraft. This configuration allows number 2 to be in a strong position for both visual reference and control, while still being separated enough to ensure safe operations and effective maneuverability. Flying at the same altitude as the lead helps maintain a unified tactical profile, which is essential for maintaining formation integrity. This is particularly important during maneuvers, as both aircraft need to respond to changes in speed and direction cohesively. Additionally, it provides number 2 with the best vantage point to observe lead's actions and maintain situational awareness. The other options imply different altitude strategies that would undermine formation integrity or compromise visual navigation. For instance, flying below or above the lead could negatively impact the overall coordination and safety of the formation. Thus, maintaining co-altitude is essential for effective communication and control in echelon formations.

7. What is the minimum takeoff spacing between aircraft in an instrument trail departure?

- A. No less than 10 seconds
- B. No less than 20 seconds
- C. No less than 15 seconds
- D. No less than 25 seconds

The minimum takeoff spacing between aircraft in an instrument trail departure is established as no less than 20 seconds. This spacing is crucial to ensure adequate separation between the aircraft considering wake turbulence and other factors that could affect safety during takeoff and initial climb. In instrument flight rules (IFR) conditions, the risk of a following aircraft encountering wake turbulence from the preceding aircraft increases, especially at low altitudes during takeoff. The 20-second interval provides sufficient time for separation, allowing the trailing aircraft to avoid the wake turbulence produced by the preceding aircraft as they climb. Understanding this spacing requirement is essential for formation flying and ensuring safety in crowded airspace. It is important to adhere to these regulations not only for individual safety but also for maintaining the overall efficiency and predictability of traffic in busy terminal environments.

8. If an aircraft is NORDO, where will it orbit and at what airspeed?

- A. Center radial/DME at 200 KIAS
- B. Center radial/DME at 180 KIAS
- C. Highlight radial/DME at 150 KIAS
- D. Outward radial/DME at 210 KIAS

When an aircraft is NORDO (No Radio), it signifies that the aircraft is unable to communicate over the radio. In such scenarios, standard procedures are established to maintain safety and orderly traffic management. Orbiting typically occurs at a specific radial and distance from a reference point, usually designated by a VOR (VHF Omnidirectional Range) station. In this context, the correct option mentions orbiting at the center radial/DME (Distance Measuring Equipment) at an airspeed of 180 KIAS (Knots Indicated Air Speed). This is important for maintaining a safe distance from other aircraft and ensuring proper separation within the airspace, especially in a busy terminal environment. Choosing 180 KIAS is suitable because it aligns well with the standard operating procedures for NORDO aircraft. This speed allows for a reasonable rate of turn and managing the aircraft's performance effectively while conducting the orbit. The use of the center radial also helps in maintaining a stable position relative to known navigational aids, making it easier to visually acquire other traffic and adhere to established flight paths.

9. What is the recommended action if number 2 cannot maintain visual contact with number 1?

- A. Continue formation flying
- B. Break off and rejoin later
- C. Adjust altitude to gain visual contact
- D. Initiate a lead change

When number 2 cannot maintain visual contact with number 1 during formation flying, breaking off and rejoining later is the recommended action. Maintaining visual contact is crucial for safety and effective communication between aircraft in formation. If number 2 loses sight of number 1, it creates a risk of collision and hinders the formation's ability to maneuver together effectively. Breaking off allows number 2 to regain visual contact without compromising the safety of the formation. Once visual contact is reestablished, number 2 can safely rejoin the formation. This approach prioritizes maintaining safe separation and situational awareness, ensuring that both aircraft can continue to operate effectively without risking unsafe maneuvers. Adjusting altitude might seem like a logical step to regain visual contact, but without clear sight of number 1, this could lead to further complications and still not guarantee improved visibility. Initiating a lead change may also not address the immediate issue of lost visual contact. Therefore, breaking off and rejoining later is the most prudent action in this scenario.

10. When is it crucial to utilize visual signals during a formation flight?

- A. During low-level maneuvers
- B. When radio transmissions may interfere
- C. In case of emergency
- D. When flying at high altitudes

Utilizing visual signals during formation flight is particularly crucial when radio transmissions may interfere with communication. In formation flying, effective communication is key to maintaining safety and coordination among pilots. Radio transmissions can sometimes become unclear or interrupted due to environmental factors or radio congestion, which can lead to misunderstandings or a complete loss of information. In such scenarios, relying on visual signals allows pilots to maintain situational awareness and coordinate maneuvers without the risk of miscommunication. Visual cues such as hand signals or flight path adjustments can effectively convey important messages about position changes, speed adjustments, or any other necessary actions without the reliance on radio communications. In contrast, while low-level maneuvers, emergencies, and high-altitude flights all present unique challenges, the need for visual signals in the context of potential radio interference is a primary focus. This ensures that pilots can continue their operations smoothly and safely even when their usual means of communication are compromised.