

SV Green Sheet, Hydraulics Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What is the result of positioning an engine HYD PUMPS switch to OFF?**
 - A. It shuts down the engine**
 - B. Fluid flow is isolated from the system components**
 - C. The hydraulic system is activated**
 - D. It activates the backup hydraulic system**

- 2. What does a double-acting hydraulic cylinder do?**
 - A. Can only exert force in one direction**
 - B. Exerts force in both extending and retracting strokes**
 - C. Is only used for lifting applications**
 - D. Operates similarly to a hydraulic motor**

- 3. What is the function of the landing gear transfer unit?**
 - A. To increase the speed of landing gear retraction**
 - B. To supply hydraulic fluid for landing gear operation**
 - C. To prevent landing gear from locking**
 - D. To clean hydraulic fluid before use**

- 4. What must occur for the hydraulic transfer unit to supply fluid at a normal rate?**
 - A. The landing gear is down and locked**
 - B. The System A engine-driven pump must be operational**
 - C. System A engine-driven pump volume must be lost**
 - D. The backup hydraulic pressure must increase**

- 5. What is indicated when the LOW QUANTITY light activates?**
 - A. The standby fluid level is normal**
 - B. The standby fluid level is inadequate**
 - C. The hydraulic system is functioning properly**
 - D. The main control panel is malfunctioning**

6. What can be a result of using the incorrect hydraulic fluid?

- A. Improved hydraulic system efficiency**
- B. Increased wear and potential failure**
- C. Enhanced fluid longevity**
- D. Reduced temperature variability**

7. Hydraulic System B provides fluid for which of the following components?

- A. The thrust reversers**
- B. Ground spoilers**
- C. Autoslats**
- D. Power transfer unit**

8. What is the primary function of a hydraulic filter?

- A. To increase the fluid temperature**
- B. To remove contaminants from hydraulic fluid**
- C. To amplify hydraulic pressure**
- D. To regulate flow rate**

9. If System B quantity indicates zero and System B pressure is lost, will the power transfer unit still operate?

- A. No, PTU requires pressure to operate**
- B. Yes, sufficient standpipe fluid remains**
- C. Only if System A is operational**
- D. Yes, but only temporarily**

10. What happens when an engine fire switch is pulled?

- A. The hydraulic pump LOW PRESSURE light is deactivated**
- B. The standby hydraulic system is engaged**
- C. The engine stops immediately**
- D. The hydraulic fluid is dumped**

Answers

SAMPLE

1. B
2. B
3. B
4. C
5. B
6. B
7. C
8. B
9. B
10. A

SAMPLE

Explanations

SAMPLE

1. What is the result of positioning an engine HYD PUMPS switch to OFF?

- A. It shuts down the engine
- B. Fluid flow is isolated from the system components**
- C. The hydraulic system is activated
- D. It activates the backup hydraulic system

Positioning the engine HYD PUMPS switch to OFF results in the fluid flow being isolated from the system components. This action essentially halts the operation of the hydraulic pumps, which means that the hydraulic fluid is no longer being pressurized or delivered to the actuators and other components that rely on hydraulic power. Isolating fluid flow is critical for maintenance and safety purposes, preventing unintended movements or pressure buildup in the system, which could lead to damage or hazardous situations. In contrast to this answer, shutting down the engine would involve a different process, and merely turning off the pump does not activate the primary hydraulic system, as that would require the pumps to be operational. The mention of activating a backup hydraulic system would also not apply, as the OFF position indicates a cessation of fluid flow rather than switching to a secondary system.

2. What does a double-acting hydraulic cylinder do?

- A. Can only exert force in one direction
- B. Exerts force in both extending and retracting strokes**
- C. Is only used for lifting applications
- D. Operates similarly to a hydraulic motor

A double-acting hydraulic cylinder is designed to exert force in both directions—during both the extending and retracting strokes. This functionality is achieved by having hydraulic fluid enter the cylinder on both sides of the piston. When fluid is directed to one side, the piston extends; when fluid is directed to the opposite side, the piston retracts. This capability allows for more versatile applications compared to a single-acting cylinder, which can only exert force in one direction. The ability to control the force in both directions makes double-acting cylinders highly effective in various hydraulic systems, where precise motion control is required. For instance, they are commonly used in applications requiring powerful and controlled movements, such as in machinery, automotive systems, and construction equipment. The other options do not align with the function of a double-acting hydraulic cylinder. The incorrect choices either describe characteristics of single-acting cylinders or other hydraulic devices, showcasing the unique advantage of double-acting cylinders in providing bidirectional movement.

3. What is the function of the landing gear transfer unit?

- A. To increase the speed of landing gear retraction
- B. To supply hydraulic fluid for landing gear operation**
- C. To prevent landing gear from locking
- D. To clean hydraulic fluid before use

The function of the landing gear transfer unit is to supply hydraulic fluid for landing gear operation. This unit plays a critical role in the hydraulic system that operates the landing gear. When the landing gear is deployed or retracted, it requires hydraulic fluid to move the actuators that control the landing gear's position. The transfer unit ensures that the appropriate amount of hydraulic fluid is available and directed to these components, enabling smooth and reliable operation of the landing gear system. Understanding the role of the transfer unit highlights the importance of hydraulic systems in aircraft functionality, particularly how vital they are for the safe operation of landing gear. Without a proper supply of hydraulic fluid, the landing gear may not function correctly, leading to safety issues during takeoff and landing. This emphasizes the essential nature of components like the landing gear transfer unit within an aircraft's hydraulic systems.

4. What must occur for the hydraulic transfer unit to supply fluid at a normal rate?

- A. The landing gear is down and locked
- B. The System A engine-driven pump must be operational
- C. System A engine-driven pump volume must be lost**
- D. The backup hydraulic pressure must increase

For a hydraulic transfer unit to effectively supply fluid at a normal rate, it's essential for the engine-driven pump in System A to be operational. This is because the engine-driven pump is responsible for generating the pressure necessary to move the hydraulic fluid throughout the system. If the engine-driven pump is functioning correctly, it can maintain the required pressure and flow rate for the system, allowing the hydraulic transfer unit to operate efficiently. When the volume from the engine-driven pump is present, it ensures that hydraulic pressure is available, which is crucial for various operations such as landing gear deployment and other flight control surfaces. The backup hydraulic pressure does not contribute directly to the normal operation of the hydraulic transfer unit for supplying fluid, and having the landing gear down and locked doesn't influence the hydraulic supply rate. The focus is on the proper functioning of the primary hydraulic source, which aligns with the understanding that a lack of fluid volume from the engine-driven pump would hinder the system's ability to perform correctly.

5. What is indicated when the LOW QUANTITY light activates?

- A. The standby fluid level is normal
- B. The standby fluid level is inadequate**
- C. The hydraulic system is functioning properly
- D. The main control panel is malfunctioning

When the LOW QUANTITY light activates, it indicates that the standby fluid level is inadequate. This warning is crucial because hydraulic systems rely on a sufficient volume of fluid to function effectively. An inadequate fluid level can lead to reduced efficiency, potential overheating, or even failure of the system because fluids in hydraulics serve both as a power transfer medium and a lubricant. Monitoring the fluid level is essential for the health and performance of hydraulic systems. If the fluid level drops below a certain threshold, it may not be able to provide enough pressure or flow to operate various hydraulic components effectively. Therefore, when the LOW QUANTITY light is illuminated, it serves as a critical alert to operators to check and address the fluid levels before proceeding with operations.

6. What can be a result of using the incorrect hydraulic fluid?

- A. Improved hydraulic system efficiency
- B. Increased wear and potential failure**
- C. Enhanced fluid longevity
- D. Reduced temperature variability

Using the incorrect hydraulic fluid can lead to increased wear and potential failure of the hydraulic system. Hydraulic fluids are specifically formulated to achieve certain performance characteristics like lubricity, viscosity, and chemical stability. When an incorrect fluid is used, it may not provide adequate lubrication, leading to excessive friction and wear on components such as pumps, actuators, and valves. Additionally, the wrong fluid might not have the necessary protective additives to prevent corrosion or the right viscosity to maintain efficient fluid flow under operating conditions. Over time, this can result in significant damage to the hydraulic system, potentially leading to complete failure, costly repairs, and downtime. Understanding the importance of using the correct hydraulic fluid is essential for maintaining the efficiency, longevity, and reliability of hydraulic systems.

7. Hydraulic System B provides fluid for which of the following components?

- A. The thrust reversers**
- B. Ground spoilers**
- C. Autoslats**
- D. Power transfer unit**

In hydraulic systems used in aircraft, each system is typically designed to serve specific components based on the operational requirements and the redundancy needed for safety. In this context, Hydraulic System B is associated with powering autoslats, which are devices used to enhance the aerodynamic performance of the wing during takeoff and landing by automatically extending leading-edge flaps. The specific hydraulic system is tasked with providing the necessary fluid pressure to operate these mechanisms effectively, ensuring reliable performance during critical phases of flight. Understanding the roles of different hydraulic systems is crucial for maintaining aircraft safety and functionality. While thrust reversers, ground spoilers, and power transfer units are also vital components of an aircraft's operational systems, they are managed by different hydraulic systems. Recognizing the distinct functions assigned to each hydraulic system helps in troubleshooting and maintaining the hydraulic circuit effectively.

8. What is the primary function of a hydraulic filter?

- A. To increase the fluid temperature**
- B. To remove contaminants from hydraulic fluid**
- C. To amplify hydraulic pressure**
- D. To regulate flow rate**

The primary function of a hydraulic filter is to remove contaminants from hydraulic fluid. Hydraulic systems rely on clean fluid to operate efficiently and prevent damage to internal components. Contaminants such as dirt, metal particles, and other impurities can enter the hydraulic fluid and can cause wear and tear on pumps, valves, and actuators. By filtering out these contaminants, the hydraulic filter ensures that the fluid remains clean, which in turn prolongs the life of the hydraulic system and maintains its performance. The efficiency of a hydraulic system significantly depends on the cleanliness of the fluid, as dirty fluid can lead to increased friction, overheating, and potential failure of system components. Therefore, maintaining cleanliness through filtering is critical for the system's reliability and longevity.

9. If System B quantity indicates zero and System B pressure is lost, will the power transfer unit still operate?

- A. No, PTU requires pressure to operate**
- B. Yes, sufficient standpipe fluid remains**
- C. Only if System A is operational**
- D. Yes, but only temporarily**

The power transfer unit (PTU) relies on the availability of hydraulic fluid to function. If System B shows zero quantity and has lost pressure, it indicates that there is insufficient fluid to maintain normal operations. In this context, the option stating that "sufficient standpipe fluid remains" implies that there may still be a reserve of hydraulic fluid available in the standpipe or other sections of the system that can temporarily provide enough pressure for the PTU to operate. This scenario recognizes that although System B may not be fully functional due to the lost pressure and quantity, there could still be fluid present that allows for limited operation. Understanding the mechanics of hydraulic systems, it's crucial to recognize that power transfer units are designed to function in emergency situations where primary systems may have failed or are under pressure loss. Therefore, the ability of the PTU to pull from residual capacity enables it to continue functioning at least for a short duration, depending on the amount of fluid that remains in the system.

10. What happens when an engine fire switch is pulled?

- A. The hydraulic pump LOW PRESSURE light is deactivated**
- B. The standby hydraulic system is engaged**
- C. The engine stops immediately**
- D. The hydraulic fluid is dumped**

When the engine fire switch is pulled, one of the key actions typically taken is that the hydraulic fluid is directed appropriately to prevent the risk of fire spreading, which could include shutting down systems that are no longer necessary. The correct understanding is that the activation of the fire switch is usually associated with the deactivation of certain system indicators, such as the hydraulic pump LOW PRESSURE light. This action ensures that the hydraulic system is safeguarded during an emergency, particularly because this system operates under high pressures and any leakage could exacerbate a fire situation. The other options do not accurately reflect the functions of the engine fire switch. The standby hydraulic system usually operates independently and may be engaged under different circumstances, not directly related to the engine fire switch. Stopping the engine is a critical step but may not occur instantaneously with the switch pull; there are additional steps involved in that process. Dumping hydraulic fluid would typically be a last resort to manage fire risk, and while certain valves might be engaged, it's more about isolating the system than simply dumping fluid.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://svgreensheethydraulics.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE