

Surface Weather Observer Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. A variable wind direction with a speed of 4 knots would be coded as?**
 - A. VRB04KT**
 - B. VRB04GKT**
 - C. VRB04**
 - D. VAR04KT**
- 2. What does an RVR value of 600 feet indicate for runway 02 left?**
 - A. R02L/0600FT**
 - B. R02L/6000FT**
 - C. Runway 02 left is closed**
 - D. R02L/600FT is optimal visibility**
- 3. What can affect visibility in weather observations?**
 - A. Temperature**
 - B. Cloud cover**
 - C. Fog, rain, or snow**
 - D. Wind direction**
- 4. What does an RVR value of 2400 feet indicate for runway 22?**
 - A. R22/2400FT**
 - B. Runway 22 has no visibility**
 - C. R22/2.4M**
 - D. Visibility is optimal at runway 22**
- 5. If the prevailing visibility is two and one-half statute miles, how is it reported?**
 - A. 2 1/2SM**
 - B. 2.5SM**
 - C. 2.5 miles**
 - D. 2SM**

6. What role do satellites play in modern meteorology?

- A. They only track storms**
- B. They provide localized weather predictions**
- C. They provide large-scale observations of weather patterns and conditions from space**
- D. They measure ground temperatures**

7. What is the function of an altimeter in aviation weather reporting?

- A. To measure wind speed**
- B. To measure altitude by comparing internal and external air pressure**
- C. To track atmospheric humidity**
- D. To measure temperature**

8. Which of the following is included in present weather observations?

- A. Tornado occurrences**
- B. Obscuration**
- C. Wind shear**
- D. Air temperature**

9. Which of the following describes a sandstorm?

- A. Strong winds with little visibility**
- B. Heavy rainfall with minimal wind**
- C. Cold temperatures with high humidity**
- D. Thunderstorm activity**

10. If prevailing visibility is two statute miles, how would it specifically be recorded?

- A. 2 miles**
- B. 2SM**
- C. 2 statute miles**
- D. 2.0SM**

Answers

SAMPLE

1. A
2. A
3. C
4. A
5. A
6. C
7. B
8. B
9. A
10. B

SAMPLE

Explanations

SAMPLE

1. A variable wind direction with a speed of 4 knots would be coded as?

- A. VRB04KT**
- B. VRB04GKT**
- C. VRB04**
- D. VAR04KT**

The correct coding for a variable wind direction with a speed of 4 knots is represented as "VRB04KT." In meteorological observations, the shorthand "VRB" indicates that the wind direction is variable, which means it is changing and does not come predominantly from any specific direction. The "04" denotes the speed of the wind, which in this case is 4 knots. The "KT" at the end specifies that the wind speed is measured in knots, a standard unit used in meteorology for wind speed. Therefore, when combined, "VRB04KT" succinctly conveys that the wind is variable at a speed of 4 knots. The other options contain either extraneous information or incorrect representations. For instance, "VRB04GKT" suggests gusts are involved, which is not the case since only a steady speed is indicated. "VRB04" omits the "KT" tag, which does not comply with the coding standards that indicate the measurement unit. "VAR04KT" suggests a different meaning, as "VAR" is not commonly used in this context for reporting variable wind in the same manner as "VRB." Therefore, "VRB04KT" is the correct and complete format

2. What does an RVR value of 600 feet indicate for runway 02 left?

- A. R02L/0600FT**
- B. R02L/6000FT**
- C. Runway 02 left is closed**
- D. R02L/600FT is optimal visibility**

An RVR value of 600 feet indicates the runway visual range for runway 02 left, meaning that pilots can expect to see clearly up to 600 feet along the runway. The value is crucial for assessing runway visibility conditions, especially during low visibility situations such as fog, rain, or snow. The correct option presents this information in the standard format used in aviation reports, where 'R' denotes the runway, followed by the runway number (02L) and the RVR value (0600FT). Other choices do not accurately represent the RVR information. For instance, the option specifying '6000FT' significantly overestimates the visibility, which would not accurately reflect the dangerous conditions present at an RVR of 600 feet. The choice implying that the runway is closed does not relate to the visibility data of RVR, as a specific numerical reading indicates conditions rather than closure. Lastly, suggesting that 'R02L/600FT is optimal visibility' misrepresents the safety condition, as 600 feet does not reflect optimal visibility for runway operations, but rather a lower visibility situation that could necessitate specific operational procedures for landing and takeoff.

3. What can affect visibility in weather observations?

- A. Temperature**
- B. Cloud cover**
- C. Fog, rain, or snow**
- D. Wind direction**

Visibility in weather observations is significantly impacted by the presence of phenomena like fog, rain, or snow. These conditions introduce moisture and particulates into the atmosphere that directly obstruct the ability to see clearly over distances. Fog can create a thick layer of moisture that reduces visibility to very low levels, while rain and snow can lead to reduced contrast and visibility due to the scattering and absorption of light. Cloud cover, while it can affect how much light reaches the ground and influence overall visibility, does not typically obstruct the line of sight in the same way that fog, rain, or snow does. Temperature can affect relative humidity and could indirectly lead to conditions like fog, but it does not directly reduce visibility by itself. Wind direction might influence local weather conditions and potentially disperse fog or precipitation, but it does not directly affect visibility in the same manner as fog, rain, or snow. Therefore, the presence of these weather phenomena is the primary factor in significantly impairing visibility during weather observations.

4. What does an RVR value of 2400 feet indicate for runway 22?

- A. R22/2400FT**
- B. Runway 22 has no visibility**
- C. R22/2.4M**
- D. Visibility is optimal at runway 22**

An RVR value of 2400 feet indicates that the Runway Visual Range at runway 22 is 2400 feet. The notation "R22/2400FT" specifically conveys this information. RVR is a crucial measurement for pilots as it establishes the visibility conditions on the runway, especially during low visibility situations. The indication of 2400 feet suggests that pilots can expect to see clearly up to that distance when landing on runway 22. This distance is significant because it helps inform flight operations, particularly regarding takeoff and landing procedures. The other choices do not accurately reflect the meaning of the RVR value. For example, stating that runway 22 has no visibility contradicts the explicit RVR measurement, which shows a defined range. Similarly, converting the RVR into meters or claiming optimal visibility (which typically refers to significantly clearer conditions than 2400 feet) does not accurately represent what an RVR of 2400 feet signifies in terms of visibility.

5. If the prevailing visibility is two and one-half statute miles, how is it reported?

A. 2 1/2SM

B. 2.5SM

C. 2.5 miles

D. 2SM

When reporting prevailing visibility, the standardized format is typically a numerical value followed by the abbreviation "SM," which stands for statute miles. In this case, "2 1/2SM" is the correct representation because it explicitly conveys the visibility in fractions, which can help clarify the measurement to those who are familiar with aviation and meteorological reporting. Using "2 1/2SM" adheres to the conventions established by organizations such as the National Weather Service and the Federal Aviation Administration, ensuring that the report is clear and unambiguous. The usage of fractions is common in meteorological observations, allowing for precise reporting that can easily be understood by pilots, air traffic controllers, and other weather observers. The other formats presented, while conveying the same numerical information, do not fit the conventional style. "2.5SM" is not incorrect but may be less preferred in some contexts where fraction format is standard. "2.5 miles" does not follow the abbreviation guidelines, and "2SM" understates the visibility reported. Therefore, the preference for "2 1/2SM" for reporting this specific measure is rooted in established meteorological conventions.

6. What role do satellites play in modern meteorology?

A. They only track storms

B. They provide localized weather predictions

C. They provide large-scale observations of weather patterns and conditions from space

D. They measure ground temperatures

Satellites play a crucial role in modern meteorology by providing large-scale observations of weather patterns and conditions from space. This capability enables meteorologists to monitor extensive areas of the Earth's atmosphere, which is essential for understanding weather systems, tracking storms, and analyzing climatic changes. By capturing images and data across various wavelengths, satellites can observe cloud formations, temperature variations, moisture levels, and wind patterns over vast regions, which is vital for both short-term forecasting and long-term climate studies. They offer a comprehensive view that ground-based observations alone cannot provide, improving the accuracy of weather forecasts and enhancing our understanding of atmospheric processes. The other options, while relevant to various aspects of meteorology, do not encompass the full extent of satellite capabilities. For instance, storm tracking is just one function among many, localized weather predictions typically rely on a combination of data, including ground observations, and measuring ground temperatures is a specific task not performed by satellites alone. Thus, the ability to gather wide-ranging observational data from space is what underscores the importance of satellites in meteorology.

7. What is the function of an altimeter in aviation weather reporting?

- A. To measure wind speed
- B. To measure altitude by comparing internal and external air pressure**
- C. To track atmospheric humidity
- D. To measure temperature

The function of an altimeter in aviation weather reporting is to measure altitude by comparing internal and external air pressure. An altimeter operates based on the principle that atmospheric pressure decreases with an increase in altitude. By using a barometric pressure measurement, it calculates the aircraft's elevation above sea level. This is critical for pilots, as it helps them maintain safe flight levels, avoid obstacles, and ensure safe takeoffs and landings. In aviation, accurately determining altitude is essential for navigation and safety, making the altimeter a vital instrument. While other instruments measure wind speed, humidity, or temperature, they serve different purposes and do not fulfill the role of measuring altitude, which is specifically what an altimeter is designed to do.

8. Which of the following is included in present weather observations?

- A. Tornado occurrences
- B. Obscuration**
- C. Wind shear
- D. Air temperature

Present weather observations focus on the current atmospheric conditions that can significantly impact visibility and basic weather conditions at a specific location. Obscuration refers to phenomena that reduce visibility, such as fog, rain, snow, or dust storms. This category is essential because it gives vital information about how weather conditions might be affecting visibility and safety, which is particularly critical for aviation and transportation. Other options, while related to weather, do not fit the specific criteria for present weather observations. Tornado occurrences, for instance, are reports of significant severe weather events but are not categorized under everyday weather observations. Wind shear is a change in wind speed or direction with altitude, which is crucial for flight safety but is not typically defined as present weather. Air temperature, although relevant to overall weather conditions, is generally considered a data point rather than an immediate weather phenomenon affecting visibility. Thus, obscuration is the most fitting option for inclusion in present weather observations.

9. Which of the following describes a sandstorm?

- A. Strong winds with little visibility**
- B. Heavy rainfall with minimal wind**
- C. Cold temperatures with high humidity**
- D. Thunderstorm activity**

A sandstorm is characterized by strong winds that lift and carry large amounts of sand and dust, significantly reducing visibility in the affected area. This phenomenon can occur in arid and semi-arid regions where loose sand is available. The intense winds create a wall of dust that can be dangerous, creating hazardous driving conditions and affecting respiratory health. In contrast, the other options describe weather conditions that do not align with the characteristics of a sandstorm. Heavy rainfall with minimal wind is typical of rainy weather, which would not involve the dry, high-wind conditions necessary for a sandstorm. Cold temperatures with high humidity typically signify different types of weather, such as winter precipitation or fog, which are far removed from the dry, windy conditions of a sandstorm. Thunderstorm activity refers to storms that are driven by moisture and atmospheric instability, often bringing rain, hail, and lightning, again differing significantly from the dry, windy nature of a sandstorm.

10. If prevailing visibility is two statute miles, how would it specifically be recorded?

- A. 2 miles**
- B. 2SM**
- C. 2 statute miles**
- D. 2.0SM**

When recording prevailing visibility in meteorological observations, the correct notation employs the specific abbreviation that denotes distance in statute miles. In this context, "2SM" effectively communicates that the visibility is two statute miles. Using this notation is crucial for clarity and standardization across weather reporting formats, ensuring that all observers and users of the data interpret the information uniformly. The "SM" suffix indicates that the measurement is in statute miles, distinguishing it from nautical or other potential measures of distance. Although other formats like "2 miles," "2 statute miles," and "2.0SM" may convey similar information in casual contexts, they do not adhere to the standardized reporting practices typically used in meteorological documentation, which stress the use of "SM" for statute miles. The use of two decimal points, as seen in "2.0SM," is generally not necessary unless precision is critical. Therefore, the notation "2SM" aligns with established conventions and maintains consistency in reporting.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://surfaceweatherobserver.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE