

Substation Technician Certification Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. How do current transformers (CTs) function in a substation?**
 - A. They supply power to the control systems**
 - B. They measure and transform high currents to manageable levels**
 - C. They act as backups for low voltage equipment**
 - D. They regulate temperature within the substation**
- 2. What is a WYE System?**
 - A. A system connecting multiple generators in series**
 - B. A system that connects one end of each winding to form a star shape**
 - C. A method used for simplifying electrical circuits**
 - D. A system designed for high voltage transmission**
- 3. What equipment helps mitigate excessive voltage surges on a distribution line?**
 - A. Recloser**
 - B. Lightning or surge arrestor**
 - C. Capacitor**
 - D. Transformer**
- 4. What does the label "EE2-802" on a sling indicate?**
 - A. Eye and Eye, 2 ply, 8 grade, 2 inches wide**
 - B. Extra End, 2 pieces, 8 grade, 2 meters long**
 - C. Eye and Eye, 2 ply, 8 grade, 2 feet wide**
 - D. End and Eye, 2 layers, 8 grade, 2 inches wide**
- 5. In the context of substations, what does it mean to "connect or disconnect lines or equipment"?**
 - A. Operation of switchgear**
 - B. Installation of new circuits**
 - C. Measurement of electrical parameters**
 - D. Security monitoring**

6. What rigging configuration is recommended for setting poles?

- A. Basket Configuration**
- B. Choker Configuration**
- C. Vertical Configuration**
- D. Bridle Configuration**

7. Why is oil analysis conducted on transformers?

- A. To verify manufacturer compliance**
- B. To assess the condition of transformer oil and detect issues**
- C. To improve the thermal performance of the transformer**
- D. To reduce maintenance costs**

8. What was one major impact of Roosevelt's New Deal in the 1930s?

- A. Brought electricity to farmers and rural areas**
- B. Increased tariffs on imported goods**
- C. Expanded military spending**
- D. Established Social Security**

9. Where in the electrical system is voltage typically stepped up?

- A. Substation**
- B. Power plant**
- C. Generating facility**
- D. Distribution center**

10. Which safety protocol is critical when working on substation equipment?

- A. Wearing work gloves only**
- B. Lockout/tagout procedures**
- C. Simply notifying a supervisor**
- D. Conducting routine checks without PPE**

Answers

SAMPLE

1. B
2. B
3. B
4. A
5. A
6. B
7. B
8. A
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. How do current transformers (CTs) function in a substation?

- A. They supply power to the control systems**
- B. They measure and transform high currents to manageable levels**
- C. They act as backups for low voltage equipment**
- D. They regulate temperature within the substation**

Current transformers (CTs) play a crucial role in substations by measuring and transforming high currents into lower, more manageable levels that can be easily monitored and used for protection and control purposes. This transformation is necessary because the primary currents flowing through the high-voltage systems are often too high to measure directly with standard metering equipment or protection relays. By producing a secondary current that is proportional to the primary current, CTs enable the safe handling of these high currents. For instance, a typical CT might reduce a high primary current, such as 1000 amperes, to a much lower secondary current of 1 ampere. This allows engineers and operators to utilize standard instruments and devices for analysis and response without risking damage or inaccurate readings due to high current levels. The other options do not accurately describe the main function of current transformers. For example, supplying power to control systems, acting as backups for low voltage equipment, and regulating temperature are not roles that CTs fulfill within a substation environment, as those functions are typically addressed by other equipment and systems. Thus, the emphasis on the measurement and transformation of currents is a fundamental aspect of the operational integrity and safety in electrical substations.

2. What is a WYE System?

- A. A system connecting multiple generators in series**
- B. A system that connects one end of each winding to form a star shape**
- C. A method used for simplifying electrical circuits**
- D. A system designed for high voltage transmission**

A WYE system, also known as a star configuration, is characterized by connecting one end of each winding to a common point, forming a shape that resembles a star. This configuration is commonly used in three-phase electrical systems, where each phase winding is connected to the central point, effectively balancing the load across the phases. The benefits of a WYE system include the ability to produce lower line-to-line voltages while maintaining high line-to-neutral voltages, which is efficient for distribution. Additionally, this configuration allows for easier grounding and provides a path for neutral current, making it advantageous in many industrial and commercial power applications. It is important to note that the other responses refer to different concepts. For example, connecting multiple generators in series relates to a different electrical arrangement that affects voltage and current differently. A method used for simplifying electrical circuits pertains to circuit analysis techniques, which do not describe a specific system configuration like WYE. Lastly, while a WYE system can be used in high voltage transmission, it is defined more by its configuration and connection method than its application in high voltage scenarios. This makes the choice that describes a system connecting windings in a star shape the most accurate representation of what a WYE system is.

3. What equipment helps mitigate excessive voltage surges on a distribution line?

- A. Recloser
- B. Lightening or surge arrestor**
- C. Capacitor
- D. Transformer

The correct answer is the lightning or surge arrestor because its primary function is to protect electrical equipment from voltage surges, particularly those caused by lightning strikes or switching operations on the grid. These devices are designed to divert the excessive voltage away from sensitive components and direct it to the ground, thereby preventing damage to transformers, circuit breakers, and other equipment along the distribution line. Surge arrestors are strategically installed on overhead lines and substations to ensure a rapid response to any surge event, clamping the voltage at a safe level. This protective mechanism is crucial in maintaining the integrity and longevity of the entire electrical system. Other devices mentioned, like a recloser, help in automatic fault isolation and restoration but do not specifically mitigate voltage surges. Capacitors are used for power factor correction and voltage support but do not provide surge protection. Transformers manage voltage levels in the system but are not designed to absorb or divert surges. Hence, the functionality of a lightning or surge arrestor makes it the ideal choice for protecting against voltage surges on distribution lines.

4. What does the label "EE2-802" on a sling indicate?

- A. Eye and Eye, 2 ply, 8 grade, 2 inches wide**
- B. Extra End, 2 pieces, 8 grade, 2 meters long
- C. Eye and Eye, 2 ply, 8 grade, 2 feet wide
- D. End and Eye, 2 layers, 8 grade, 2 inches wide

The label "EE2-802" on a sling signifies specific attributes of the sling, which provides critical information for its safe use in lifting applications. The designation "EE" indicates that the sling features eyes at both ends, which is essential for secure attachment to lifting devices or loads. The "2" represents the number of plies that make up the sling; a 2-ply sling typically offers increased strength and durability compared to a single ply. The "8" refers to the grade of the sling, which is a measure of its strength and load capacity. A grade of 8 indicates a high-strength material, suitable for lifting heavier loads. Lastly, the "02" indicates the width of the sling, confirming that it is 2 inches wide, an important factor in load distribution and stability during lifting operations. Understanding these specifications is crucial for ensuring that the right sling is selected for a particular job, adhering to safety standards and operational requirements in various lifting scenarios in substation and construction environments.

5. In the context of substations, what does it mean to "connect or disconnect lines or equipment"?

- A. Operation of switchgear**
- B. Installation of new circuits**
- C. Measurement of electrical parameters**
- D. Security monitoring**

To "connect or disconnect lines or equipment" refers to the operation of switchgear, which is essential for managing the flow of electricity within substations. Switchgear includes various components like circuit breakers, switches, and disconnectors that are used to make or break electrical circuits safely. This operation is crucial for controlling power distribution, performing maintenance, and ensuring the safety of personnel and equipment. In substations, effectively connecting or disconnecting lines allows for the isolation of certain sections of power lines or equipment, which is necessary during maintenance, in emergencies, or when rerouting power as needed. Understanding how to operate switchgear is vital for substation technicians, as it directly impacts the reliability and safety of the electrical system. The other options, while related to the functions of a substation, do not specifically pertain to the act of connecting or disconnecting equipment. The installation of new circuits relates more to establishing a network rather than isolating existing equipment. Measurement of electrical parameters involves diagnostics and monitoring, which is not directly connected to switching operations. Security monitoring focuses on the safety and protection of the substation, not on the physical or operational aspects of connecting or disconnecting equipment.

6. What rigging configuration is recommended for setting poles?

- A. Basket Configuration**
- B. Choker Configuration**
- C. Vertical Configuration**
- D. Bridle Configuration**

The choker configuration is often recommended for setting poles due to its ability to secure the pole firmly while providing stability during the lifting process. In this configuration, the rigging is wrapped around the pole and then passed through itself, creating a secure grip that prevents slipping. This allows for a more controlled lift and helps minimize the risk of the pole tipping over, which is crucial when handling heavy and potentially unwieldy materials like utility poles. Additionally, the choker configuration is beneficial when there isn't a flat lifting surface, as it allows the rigging to adjust automatically as the pole is lifted, maintaining a tight fit. This adaptability ensures safety during the hoisting process, particularly in variable conditions where the load may shift slightly. While other configurations may have their applications, they do not provide the same level of security and control specifically when lifting and positioning poles as the choker configuration does. This makes it the preferred choice by many professionals in the field.

7. Why is oil analysis conducted on transformers?

- A. To verify manufacturer compliance
- B. To assess the condition of transformer oil and detect issues**
- C. To improve the thermal performance of the transformer
- D. To reduce maintenance costs

Conducting oil analysis on transformers is crucial for assessing the condition of transformer oil and detecting underlying issues that may not be visible through regular inspection methods. This analysis involves examining the electrical, chemical, and physical properties of the oil, which can provide insights into the performance and health of the transformer. Transformer oil serves multiple functions, including insulation and cooling. Over time, the oil can degrade due to various factors such as oxidation, moisture contamination, and the presence of conductive particles. By analyzing oil samples, technicians can identify the presence of harmful substances like dissolved gases, water content, and metallic contaminants, which indicate potential problems such as overheating or arcing within the transformer. Timely detection of these issues through oil analysis helps ensure that any problems are addressed before they lead to transformer failure, thereby enhancing the reliability and lifespan of the equipment. Thus, this proactive measure is essential for maintaining safe and efficient operation in substations.

8. What was one major impact of Roosevelt's New Deal in the 1930s?

- A. Brought electricity to farmers and rural areas**
- B. Increased tariffs on imported goods
- C. Expanded military spending
- D. Established Social Security

One major impact of Roosevelt's New Deal in the 1930s was that it brought electricity to farmers and rural areas. This initiative was primarily realized through the Rural Electrification Administration (REA), which aimed to provide electricity to isolated rural areas that were not part of the commercial electrical grid. Prior to this, many farmers relied on outdated methods, such as kerosene lamps, for lighting and lacked modern conveniences that electricity could provide, which were commonplace in urban areas. By facilitating access to electricity, the New Deal not only improved living standards for rural citizens but also transformed agricultural practices, enabling the use of electric pumps for irrigation, refrigeration for food storage, and machinery for farming. These advancements contributed to increased productivity and improved quality of life. Access to electricity also allowed for better communication and education in rural communities, fostering economic and social growth. The other options, while significant in their own ways, do not represent the direct impact of the New Deal in the same manner. For instance, increasing tariffs on imported goods primarily relates to trade policies rather than the domestic improvement initiatives of the New Deal. Expanding military spending is more aligned with WWII preparations than with the economic recovery focus of the New Deal. Establishing Social Security was certainly a monumental achievement during this

9. Where in the electrical system is voltage typically stepped up?

- A. Substation**
- B. Power plant**
- C. Generating facility**
- D. Distribution center**

Voltage is typically stepped up at generating facilities, which are designed to transform the voltage produced by generators into higher levels for efficient long-distance transmission. When electricity is generated, it is usually at a lower voltage suitable for the initial stage of power production. To reduce the energy losses that occur over long distances, the voltage is increased at the generating facility using step-up transformers. This process is critical in ensuring that power can travel efficiently through transmission lines, minimizing resistive losses. Once the high-voltage electricity reaches substations closer to the end-users, it can then be stepped down to lower voltages suitable for distribution. In contrast, substations primarily focus on voltage transformation for distribution rather than initial voltage increase. Power plants are often confused with generating facilities; however, terminology can differ depending on the context. Distribution centers handle the lower-voltage electricity already stepped down and do not typically change voltage levels from generation to transmission.

10. Which safety protocol is critical when working on substation equipment?

- A. Wearing work gloves only**
- B. Lockout/tagout procedures**
- C. Simply notifying a supervisor**
- D. Conducting routine checks without PPE**

Lockout/tagout procedures are critical safety protocols when working on substation equipment because they ensure that all energy sources are properly isolated and inoperative before any maintenance or repair work begins. This process involves tagging equipment to indicate that it cannot be operated and securing it in a way that it cannot accidentally be re-energized while technicians are performing their tasks. This greatly reduces the risk of accidental energization, which could lead to severe injuries or fatalities. Proper lockout/tagout practices require that the person performing maintenance visibly lock and tag the equipment, ensuring that others are aware of the maintenance activity underway. This protocol is not just a recommendation but a regulatory requirement in many jurisdictions, emphasizing its fundamental role in electrical safety practices. In contrast, relying solely on wearing work gloves does not provide sufficient protection against electrical hazards, and simply notifying a supervisor does not guarantee that the equipment will be properly locked out and tagged. Conducting routine checks without personal protective equipment (PPE) poses significant risks to personal safety, further highlighting the importance of adhering to established safety protocols like lockout/tagout.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://substationtech.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE