

SSI Specialty Course Enriched Air Nitrox (SC-EAN) 40% Level 2 Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. Why is underwater navigation important when utilizing EANx?**
 - A. To avoid getting lost underwater**
 - B. To maintain optimal control of dive depth and time, reducing nitrogen absorption risks**
 - C. To find the fastest route back to the surface**
 - D. To access specific dive sites**
- 2. What should divers regularly do to ensure compliance with EANx diving practices?**
 - A. Test their equipment before every dive**
 - B. Review and refresh their training and knowledge**
 - C. Consult with a dive shop before each dive**
 - D. Use a different gas mixture for every dive**
- 3. How does increased O2 concentration affect dive planning?**
 - A. It allows for longer dives**
 - B. It necessitates lower maximum operating depths**
 - C. It has no effect on dive planning**
 - D. It requires more frequent stops**
- 4. Why is it important to log each dive when using EANx?**
 - A. To prove certification to others**
 - B. To memorize dive locations**
 - C. To track exposure to certain gas mixtures and avoid limit breaches**
 - D. To assess physical fitness levels**
- 5. What is a common misconception about EANx diving?**
 - A. It allows for longer dives without limits**
 - B. It reduces the need for dive planning**
 - C. It eliminates the risk of decompression sickness**
 - D. It is only for experienced divers**

6. You can improve your safety while diving with nitrox by:

- A. Using a more aggressive dive profile**
- B. Using the same depth and time limitations as an air table or air computer**
- C. Only diving during daylight**
- D. Increasing your bottom time**

7. How does the partial pressure of oxygen influence oxygen toxicity?

- A. Lower partial pressures decrease risks**
- B. Higher partial pressures can increase the risk of toxicity**
- C. Partial pressure does not affect toxicity**
- D. Oxygen toxicity only occurs at surface levels**

8. What is the role of planning and preparation in enriched air diving?

- A. It is optional for experienced divers**
- B. It helps to reduce potential risks during the dive**
- C. It solely enhances the diving experience**
- D. It only applies to new divers**

9. What might happen if a diver exceeds the maximum operating depth for a given EANx mixture?

- A. Increased buoyancy control**
- B. Oxygen toxicity and potential convulsions**
- C. Improved visibility underwater**
- D. Shorter dive times**

10. Which populations are advised to avoid diving with Enriched Air Nitrox?

- A. Young divers with less than 10 dives**
- B. Individuals with specific medical conditions or on certain medications**
- C. Divers with less than a year of experience**
- D. All novice divers**

Answers

SAMPLE

1. B
2. B
3. B
4. C
5. A
6. B
7. B
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. Why is underwater navigation important when utilizing EANx?

- A. To avoid getting lost underwater**
- B. To maintain optimal control of dive depth and time, reducing nitrogen absorption risks**
- C. To find the fastest route back to the surface**
- D. To access specific dive sites**

Underwater navigation is essential when utilizing Enriched Air Nitrox (EANx) because it helps divers maintain optimal control over their dive depth and time. When diving with EANx, it's critical to manage exposure to nitrogen to minimize the risk of nitrogen narcosis and decompression sickness. By effectively navigating, a diver can stay within their planned depth limits and adhere to their dive profile, ensuring that they do not exceed safe nitrogen absorption levels. Divers using EANx may have longer bottom times compared to regular air due to its lower nitrogen content. Accurate navigation ensures they can utilize that time wisely while making sure they do not stray too deep or venture off-course where exposure to nitrogen could increase. Proper navigation aids in controlling ascent rates and ensuring that safety stops are maintained, further mitigating the risks associated with nitrogen loading, thus enhancing the safety and effectiveness of the dive.

2. What should divers regularly do to ensure compliance with EANx diving practices?

- A. Test their equipment before every dive**
- B. Review and refresh their training and knowledge**
- C. Consult with a dive shop before each dive**
- D. Use a different gas mixture for every dive**

Reviewing and refreshing training and knowledge is essential for divers using enriched air nitrox (EANx) because the understanding of gas management, physiology, and safety procedures is crucial for safe diving. As divers gain experience, regulations and best practices may evolve, and keeping current helps ensure that divers are well-versed in any changes. Continuous education reinforces safe diving habits, enhances decision-making, and promotes best practices regarding exposure to oxygen and nitrogen under different pressures. In contrast, testing equipment before every dive, while important for safety, primarily pertains to the physical condition of the gear rather than ensuring compliance with EANx practices. Consulting a dive shop can provide valuable information, but it does not replace the need for divers to understand their own training and the nuances of EANx diving. Using different gas mixtures for every dive does not align with EANx practices, where consistency in the chosen gas blend is typically recommended for maintaining safety and managing exposure limits effectively.

3. How does increased O₂ concentration affect dive planning?

- A. It allows for longer dives
- B. It necessitates lower maximum operating depths**
- C. It has no effect on dive planning
- D. It requires more frequent stops

Increased oxygen concentration in diving mixtures, such as those used in enriched air nitrox, directly impacts the maximum operating depth of a dive due to the risk of oxygen toxicity. As the percentage of oxygen in the mix increases, so does the partial pressure of oxygen that a diver experiences at depth. Oxygen toxicity can result in various neurological and pulmonary effects, which become more pronounced as the partial pressure exceeds safe limits. For recreational diving, the generally accepted maximum partial pressure for oxygen is 1.4 ATA (atmospheres absolute) to minimize the risk of toxicity. This limit in turn restricts how deep a diver can go when using a higher concentration of oxygen, hence necessitating lower maximum operating depths. Understanding this relation is crucial for dive planning, as divers must carefully calculate their depth limits to ensure safety while utilizing enriched air nitrox.

4. Why is it important to log each dive when using EANx?

- A. To prove certification to others
- B. To memorize dive locations
- C. To track exposure to certain gas mixtures and avoid limit breaches**
- D. To assess physical fitness levels

Logging each dive while using Enriched Air Nitrox (EANx) is crucial for tracking exposure to specific gas mixtures, which helps divers avoid limit breaches related to oxygen exposure. Each dive log includes details about the maximum depth, bottom time, and the mixture of gases used. This information allows divers to monitor their cumulative exposure to oxygen, which is essential for maintaining safe dive practices and preventing oxygen toxicity, especially since EANx involves higher percentages of oxygen than regular air. Understanding the limits associated with different gas mixtures is key to planning subsequent dives safely. By effectively tracking this exposure, divers can make informed decisions about their dive profiles, including how deep and how long they can dive with a specific EANx mixture without exceeding safe limits. This practice not only enhances safety but also reinforces the importance of adhering to dive tables or dive computers programmed for the specific gas mixtures being used. Other considerations, such as proving certification or memorizing dive locations, are less critical to dive safety and planning. While assessing physical fitness is important for overall diving health, it does not directly relate to the logging of dives with EANx or the associated limits and exposures. Logging dives primarily serves to ensure that divers maintain safe exposure levels to avoid health risks associated with gas mixtures.

5. What is a common misconception about EANx diving?

- A. It allows for longer dives without limits**
- B. It reduces the need for dive planning**
- C. It eliminates the risk of decompression sickness**
- D. It is only for experienced divers**

A common misconception about diving with Enriched Air Nitrox (EANx) is that it allows for longer dives without limits. This misunderstanding arises from the fact that diving with a higher oxygen content can provide certain advantages, such as extending no-decompression limits or allowing for shallower dives while reducing nitrogen absorption. However, it's essential to recognize that while EANx can enable longer dive times compared to air at certain depths, there are still limits based on the specific mix being used, the depth of the dive, and the need for proper planning and adherence to dive tables or dive computers. Diving with EANx requires careful consideration of these factors and does not eliminate the fundamental principles of dive planning or the risks associated with diving, including the likelihood of encountering decompression sickness if the necessary protocols are not followed. Therefore, while EANx provides some advantages in terms of extended time underwater, it does not grant unlimited dive possibilities. Diving still demands thorough planning and understanding of the potential risks involved.

6. You can improve your safety while diving with nitrox by:

- A. Using a more aggressive dive profile**
- B. Using the same depth and time limitations as an air table or air computer**
- C. Only diving during daylight**
- D. Increasing your bottom time**

Using the same depth and time limitations as an air table or air computer is a sound practice for improving safety while diving with nitrox. Nitrox has a higher oxygen concentration than air, which can lead to an increased risk of oxygen toxicity if appropriate depth limits are not adhered to. By following the depth and time limits that are appropriate for air, divers can mitigate this risk. This approach helps ensure that divers remain within safe operating ranges and do not inadvertently expose themselves to higher partial pressures of oxygen. The other options could lead to less safe diving practices. For example, adopting a more aggressive dive profile or increasing bottom time without considering the specific limitations of the nitrox mix could increase the risk of experiencing nitrogen narcosis or oxygen toxicity. Diving only during daylight does not directly affect the safety of the gas mix being used — it is more about the environmental conditions rather than adhering to safe dive practices.

7. How does the partial pressure of oxygen influence oxygen toxicity?

- A. Lower partial pressures decrease risks
- B. Higher partial pressures can increase the risk of toxicity**
- C. Partial pressure does not affect toxicity
- D. Oxygen toxicity only occurs at surface levels

The correct answer highlights the relationship between higher partial pressures of oxygen and the increased risk of oxygen toxicity. Oxygen toxicity occurs when an individual is exposed to oxygen levels that exceed safe thresholds for a given pressure. As the partial pressure of oxygen increases, especially above 1.4 ATA (atmospheres absolute), the body may begin to experience adverse effects due to heightened oxygen levels. Under these elevated pressures, oxygen can produce toxic effects on the central nervous system and lungs, leading to symptoms such as visual disturbances, seizures, and lung damage. This risk is particularly pertinent in diving environments where divers might breathe gases enriched with oxygen, especially during deep dives or extended exposures that require greater caution. Understanding this principle is crucial for divers using Enriched Air Nitrox, as it guides safe diving practices and helps in planning dives while minimizing the risk of oxygen toxicity by monitoring and managing the partial pressures of oxygen.

8. What is the role of planning and preparation in enriched air diving?

- A. It is optional for experienced divers
- B. It helps to reduce potential risks during the dive**
- C. It solely enhances the diving experience
- D. It only applies to new divers

Planning and preparation play a critical role in enriched air diving as they are essential for reducing potential risks during the dive. By carefully assessing the dive conditions, calculating the appropriate mix of oxygen and nitrogen, and understanding the limits associated with the specific gas blend being used, divers can significantly minimize risks such as oxygen toxicity and decompression sickness. This thorough preparation ensures that divers are aware of their limits, the dive plan, and any contingencies for unexpected situations, ultimately contributing to a safer diving experience. Moreover, planning is not just about preparing for the dive itself; it extends to factors like equipment checks, ensuring that all gear is functioning properly, and having a clear understanding of emergency procedures. Experienced divers, in particular, benefit from diligent preparation as the complexities of diving with enriched air require a good grasp of gas management and the physiological effects of higher concentrations of oxygen. Thus, the focus on solid planning and preparation is a fundamental aspect of safe and successful enriched air diving.

9. What might happen if a diver exceeds the maximum operating depth for a given EANx mixture?

- A. Increased buoyancy control**
- B. Oxygen toxicity and potential convulsions**
- C. Improved visibility underwater**
- D. Shorter dive times**

Exceeding the maximum operating depth for a specific EANx (Enriched Air Nitrox) mixture can lead to oxygen toxicity, which is a serious condition that may cause symptoms ranging from visual changes to convulsions. Each EANx blend has a predetermined maximum operating depth, determined by the partial pressure of oxygen at that depth. When a diver descends below this limit, the increased pressure causes the oxygen in the mixture to reach concentrations that can lead to toxic effects on the central nervous system. Understanding this is crucial for ensuring diver safety. Oxygen toxicity can manifest in ways that may incapacitate a diver, making them unable to respond appropriately to their environment or emergency situations. This risk highlights the importance of adhering to depth limits for each specific gas mixture when planning dives. In contrast, while options implying improved buoyancy control, enhanced visibility, or reduced dive times may have some association with diving, they do not address the significant risks related to exceeding maximum operating depths with specific gas mixes. Therefore, the right choice emphasizes the critical health implications of oxygen toxicity associated with diving beyond safe limits.

10. Which populations are advised to avoid diving with Enriched Air Nitrox?

- A. Young divers with less than 10 dives**
- B. Individuals with specific medical conditions or on certain medications**
- C. Divers with less than a year of experience**
- D. All novice divers**

Individuals with specific medical conditions or on certain medications should avoid diving with Enriched Air Nitrox due to the potential risks associated with increased oxygen levels. Enriched Air Nitrox has a higher oxygen content than regular air, which can pose significant health challenges for those with conditions such as respiratory issues, cardiovascular diseases, or certain neurological disorders. Additionally, some medications may increase a person's sensitivity to oxygen, potentially leading to toxicity when diving with Nitrox. Consequently, medical evaluation and clearance are critical for anyone considering diving with enriched air, especially if they have underlying health conditions or are taking medications that might complicate their diving safety. On the other hand, young divers, novice divers, and those with less diving experience might still be able to participate in diving activities with proper instruction and training, provided they meet health and safety guidelines. Therefore, the correct population to avoid Nitrox diving focuses primarily on health factors rather than experience level alone.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://ssiscean40percentlvl2.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE