

SQA Higher Physics Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which type of semiconductor would be produced by doping with elements that create extra positive charge carriers?**
 - A. N-type semiconductor**
 - B. P-type semiconductor**
 - C. Conductors**
 - D. Dielectrics**
- 2. Which law describes the relationship between the distance of an object and its recessional velocity?**
 - A. Einstein's Law**
 - B. Newton's Law**
 - C. Hubble's Law**
 - D. Kepler's Law**
- 3. What does the term emf refer to in a circuit?**
 - A. Electrical potential energy**
 - B. Voltage across the load**
 - C. Voltage drop**
 - D. The number of joules given to each Coulomb of charge**
- 4. What characteristic is shared by both electrical and mechanical waves?**
 - A. They both require a medium to travel.**
 - B. They both can travel through a vacuum.**
 - C. They both exhibit reflection and refraction.**
 - D. They both have a frequency and wavelength.**
- 5. In a semiconductor, what is the significance of the conduction band being partially filled?**
 - A. It prevents electrical flow**
 - B. It allows for conduction under certain conditions**
 - C. It provides insulation**
 - D. It contains trapped holes**

6. In which type of collision is kinetic energy lost?

- A. Elastic collision**
- B. Perfectly inelastic collision**
- C. Inelastic collision**
- D. Superelastic collision**

7. What is the primary function of a capacitor in electrical circuits?

- A. To convert AC to DC**
- B. To store electrical energy**
- C. To increase voltage levels**
- D. To measure current flow**

8. What happens to particles in a material during thermal expansion?

- A. They become less dense**
- B. They contract closer together**
- C. They move more freely with increased energy**
- D. They slow down significantly**

9. In a series circuit, how are components connected?

- A. In parallel**
- B. End-to-end**
- C. In a loop**
- D. Across the same voltage source**

10. Which unit is used to measure potential difference?

- A. Amperes**
- B. Volts**
- C. Pascals**
- D. Newtons**

Answers

SAMPLE

1. B
2. C
3. D
4. D
5. B
6. C
7. B
8. C
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. Which type of semiconductor would be produced by doping with elements that create extra positive charge carriers?

- A. N-type semiconductor**
- B. P-type semiconductor**
- C. Conductors**
- D. Dielectrics**

Doping a semiconductor involves introducing impurities into the material to modify its electrical properties. When a semiconductor is doped with elements that create extra positive charge carriers, it results in a P-type semiconductor. In a P-type semiconductor, the dopants are typically from group III of the periodic table, such as boron or aluminum. These elements have one fewer valence electron compared to silicon (which has four valence electrons). As a result, when these elements are incorporated into the silicon crystal lattice, they create "holes." A hole is a vacancy where an electron could have been, and it behaves like a positive charge carrier because electrons can jump into these holes, allowing for the flow of current. This process enhances the conductivity of the semiconductor because the positive holes can move through the lattice, effectively conducting electricity. Therefore, the presence of these additional positive charge carriers directly leads to the classification as a P-type semiconductor. In contrast, an N-type semiconductor would result from doping with elements that have more valence electrons than silicon, such as phosphorus, which introduces free electrons as negative charge carriers. Conductors, on the other hand, already have a high density of charge carriers and do not require doping in the same manner as semiconductors. Dielect

2. Which law describes the relationship between the distance of an object and its recessional velocity?

- A. Einstein's Law**
- B. Newton's Law**
- C. Hubble's Law**
- D. Kepler's Law**

The law that describes the relationship between the distance of an object in the universe and its recessional velocity is Hubble's Law. According to this law, the farther away a galaxy is, the faster it appears to be moving away from us. This relation indicates that the universe is expanding, and it was first observed by Edwin Hubble in the late 1920s. Hubble's Law is often expressed mathematically as $v = H_0 d$, where v is the recessional velocity, d is the distance, and H_0 is the Hubble constant, a measure of the rate of expansion of the universe. The significance of Hubble's Law lies in its implications for cosmology, providing a direct relationship that helps in estimating distances to faraway galaxies based on their observed velocities. This foundational principle supports the Big Bang theory by indicating that galaxies are moving away from each other as the universe expands.

3. What does the term emf refer to in a circuit?

- A. Electrical potential energy
- B. Voltage across the load
- C. Voltage drop
- D. The number of joules given to each Coulomb of charge**

The term emf, or electromotive force, refers specifically to the amount of energy provided per unit charge by a source of electrical energy, such as a battery or generator. It quantifies the energy transfer when a charge moves through the source, essentially describing how much energy is supplied to each Coulomb of charge. Thus, emf can be understood as the number of joules given to each Coulomb of charge, making it an important concept in understanding how electrical circuits operate. In a circuit, this energy supplied by the emf can result in a voltage across components, but the term itself directly describes this energy per charge relationship rather than just the potential or voltage in use across the circuit elements.

4. What characteristic is shared by both electrical and mechanical waves?

- A. They both require a medium to travel.
- B. They both can travel through a vacuum.
- C. They both exhibit reflection and refraction.
- D. They both have a frequency and wavelength.**

Both electrical and mechanical waves share the characteristic of having a frequency and a wavelength. Frequency refers to the number of oscillations or cycles that occur in a given period of time, while wavelength is the distance between successive points of similar phase in the wave, such as crest to crest or trough to trough. In mechanical waves, such as sound waves or waves on a string, these properties arise from the vibrations of particles in a medium. For example, in sound waves, the frequency determines the pitch of the sound, while the wavelength is related to how far apart those compressions and rarefactions are in the medium. Similarly, electromagnetic waves, which include radio waves, visible light, and X-rays, also have a frequency and wavelength, though they do not require a medium and can propagate through a vacuum. In electromagnetic waves, frequency is linked to energy, and the wavelength determines the type of electromagnetic radiation. This commonality highlights the fundamental nature of waves across different contexts, whether they involve a medium (as in mechanical waves) or propagate through vacuum (as in electromagnetic waves).

5. In a semiconductor, what is the significance of the conduction band being partially filled?

- A. It prevents electrical flow**
- B. It allows for conduction under certain conditions**
- C. It provides insulation**
- D. It contains trapped holes**

The significance of a partially filled conduction band in a semiconductor lies in its ability to facilitate electrical conduction under certain conditions. In a semiconductor, the conduction band represents the energy levels available for electrons to move freely and carry an electric current. When the conduction band is partially filled, there are available energy states for electrons to occupy. This means that some electrons can move to higher energy levels and participate in conduction, especially when energy is provided (for example, through thermal excitation or doping). This characteristic distinguishes semiconductors from insulators, where the conduction band is completely empty, and metals, where it is fully filled. Moreover, the ability for electrons to gain energy and transition to these available states allows for increased conductivity with temperature or through the introduction of impurities (doping), making semiconductors versatile materials for electronic applications.

6. In which type of collision is kinetic energy lost?

- A. Elastic collision**
- B. Perfectly inelastic collision**
- C. Inelastic collision**
- D. Superelastic collision**

In an inelastic collision, some portion of the kinetic energy of the system is transformed into other forms of energy, such as heat, sound, or internal energy, during the collision process. This is a defining characteristic of inelastic collisions, where the objects involved may stick together or deform, indicating that kinetic energy is not conserved. While momentum is conserved in both elastic and inelastic collisions, kinetic energy conservation occurs only in elastic collisions. In the case of perfect inelastic collisions, the two colliding objects stick together after impact, resulting in a significant loss of kinetic energy. However, since "inelastic collision" encompasses both cases where energy is lost and situations where the objects may still separate (but are still not conserving kinetic energy), it is appropriately answered as inelastic collision since it broadly indicates situations where kinetic energy is lost. The terms in the other options refer to scenarios where kinetic energy is conserved or altered in predictable ways that do not fit the definition of kinetic energy loss. Therefore, the classification of inelastic collisions captures the essence of kinetic energy loss correctly.

7. What is the primary function of a capacitor in electrical circuits?

- A. To convert AC to DC**
- B. To store electrical energy**
- C. To increase voltage levels**
- D. To measure current flow**

The primary function of a capacitor in electrical circuits is to store electrical energy. Capacitors are components that can accumulate and hold an electric charge. When connected to a power source, they can charge up, accumulating energy in the form of an electric field between their plates. This stored energy can then be released when needed, making capacitors essential for various applications in electrical and electronic circuits. For instance, capacitors play a crucial role in smoothing voltage fluctuations in power supplies, serving as energy reservoirs during periods of high demand. They are also used in timing circuits, coupling signals between stages in amplifiers, and filtering applications, where they help to maintain stable voltages and improve signal integrity. Other options may pertain to different functions related to circuit behavior but do not align with the primary function of a capacitor. Converting AC to DC is typically achieved using rectifiers, while increasing voltage levels is done by transformers. Measuring current flow is the role of devices like ammeters, not capacitors. Hence, the emphasis on the capacity to store electrical energy is what defines the primary function of capacitors in electrical circuits.

8. What happens to particles in a material during thermal expansion?

- A. They become less dense**
- B. They contract closer together**
- C. They move more freely with increased energy**
- D. They slow down significantly**

During thermal expansion, the temperature of a material increases, which leads to an increase in the kinetic energy of its particles. As the energy of the particles rises, their motion becomes more vigorous. This increased motion causes the particles to push against each other more forcefully, which results in them moving apart from one another. In this process, the volume of the material expands, and while the density of the material typically decreases due to the increased spacing between particles, the primary characteristic of thermal expansion is this enhanced freedom of movement among the particles. Therefore, the correct response captures how the kinetic energy translates into greater movement and spacing of particles, indicating that they indeed move more freely with increased energy. This phenomenon is a fundamental aspect of thermal dynamics and is critical for understanding various applications in materials science and engineering.

9. In a series circuit, how are components connected?

- A. In parallel
- B. End-to-end**
- C. In a loop
- D. Across the same voltage source

In a series circuit, components are connected end-to-end, which means that the current has only one path to follow through each component in sequence. This configuration ensures that the same current flows through all components, and the total voltage across the series circuit is the sum of the individual voltage drops across each component. When connected in this manner, if any single component fails or is removed, the entire circuit is broken, resulting in all components being turned off. This characteristic of series circuits is crucial for applications where the behavior of each component directly affects the entire operation of the circuit. The end-to-end connection also facilitates the calculation of total resistance and voltage distribution, which can be pivotal in circuit design and analysis.

10. Which unit is used to measure potential difference?

- A. Amperes
- B. Volts**
- C. Pascals
- D. Newtons

The unit used to measure potential difference, commonly referred to as voltage, is volts. When we talk about potential difference, we are referring to the work done per unit charge to move a charge between two points in an electric field. This is a fundamental concept in electricity and electronics, as it helps us understand how electric circuits function. The volt is defined as one joule of energy per coulomb of charge, which means that if a potential difference of one volt exists between two points, one joule of energy is required to move one coulomb of charge between those points. This unit is essential for quantifying how much energy is available to drive electric current through a circuit. Understanding potential difference is critical in various applications, from designing electronic devices to analyzing electrical systems in practical scenarios. Consequently, recognizing volts as the unit for measuring potential difference is foundational knowledge in physics.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://sqahigherphysics.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE