

Soil Judging National Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What additional requirement must be met for the bottom of a spodic horizon?**
 - A. 18 cm or deeper**
 - B. 24 cm or deeper**
 - C. 12 cm or deeper**
 - D. 15 cm or deeper**

- 2. Which test is commonly used to evaluate nutrient levels in soil?**
 - A. Soil fertility test**
 - B. Soil moisture test**
 - C. Soil texture analysis**
 - D. Soil salinity test**

- 3. What term refers to the area at the junction of two upland slopes?**
 - A. Interfluve**
 - B. Floodplain**
 - C. Drumlin**
 - D. Moraine**

- 4. Which of the following is NOT a hydric soil indicator?**
 - A. A12 thick dark surface**
 - B. A11 depleted below dark surface**
 - C. S3 highly organic**
 - D. F3 depleted matrix**

- 5. Identify a suborder of Mollisols.**
 - A. Alb**
 - B. Aq**
 - C. Ud**
 - D. All of the above**

6. What is one reason to analyze the physical properties of soil?

- A. To determine crop rotation schedules**
- B. To evaluate soil compaction and aeration**
- C. To assess animal grazing patterns**
- D. To prevent water runoff**

7. What are the primary soil textures?

- A. Sand, silt, clay**
- B. Loam, gravel, sand**
- C. Silt, clay, rock**
- D. Clay, chalk, silt**

8. Which soil horizon typically contains the most nutrients?

- A. C horizon**
- B. B horizon**
- C. O horizon**
- D. E horizon**

9. Why is it essential to evaluate cumulative thickness in mollic soils?

- A. To assess drainage capabilities**
- B. To determine suitability for agriculture**
- C. To identify weathering processes**
- D. To confirm presence of micromorphology**

10. Which soil order is characterized by the presence of spodic horizons?

- A. Mollisol**
- B. Alfisol**
- C. Inceptisol**
- D. Spodosol**

Answers

SAMPLE

1. C
2. A
3. A
4. C
5. D
6. B
7. A
8. C
9. B
10. D

SAMPLE

Explanations

SAMPLE

1. What additional requirement must be met for the bottom of a spodic horizon?

- A. 18 cm or deeper**
- B. 24 cm or deeper**
- C. 12 cm or deeper**
- D. 15 cm or deeper**

To determine the depth requirement for the bottom of a spodic horizon, it's important to understand the characteristics and classification of this horizon within soils. A spodic horizon is typically characterized by specific features resulting from the leaching and accumulation of organic matter, aluminum, and iron, commonly seen in certain soil types such as Spodosols. The correct answer indicates that the bottom of a spodic horizon must be at least 12 cm deep. This depth criterion is essential for classification purposes and reflects the soil's ability to exhibit the necessary morphological and compositional traits associated with spodic horizons. Meeting this depth requirement is crucial because it ensures that the properties associated with the spodic conditions—such as the accumulation of illuviated materials—are present and can be adequately analyzed. Other depth specifications, like 18 cm, 24 cm, and 15 cm, may describe different horizons or soil characteristics but do not align with the specific criteria for spodic horizons that are set forth in soil classification guidelines. Therefore, understanding the precise depth requirement is key to correctly identifying and classifying soil horizons in the field.

2. Which test is commonly used to evaluate nutrient levels in soil?

- A. Soil fertility test**
- B. Soil moisture test**
- C. Soil texture analysis**
- D. Soil salinity test**

A soil fertility test is specifically designed to evaluate the nutrient levels in soil, making it essential for understanding the nutrient content available for plant growth. This test typically involves analyzing the soil for key nutrients such as nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur, as well as micronutrients like iron, manganese, and zinc. The results from a soil fertility test help in making informed decisions regarding fertilization and soil amendment practices, allowing for optimized crop production and soil health. Other tests, while important in soil assessment, do not focus solely on nutrient levels. A soil moisture test assesses the amount of water present in the soil, which is critical for irrigation and drought management but does not provide information about nutrient content. Soil texture analysis determines the proportions of sand, silt, and clay in the soil, impacting water retention and drainage, but it is not a measure of nutrient levels. Soil salinity tests measure the concentration of soluble salts in the soil, which can affect plant health but do not directly assess the nutrient content available for growth. Thus, the soil fertility test stands as the most relevant and targeted method for evaluating nutrient levels.

3. What term refers to the area at the junction of two upland slopes?

- A. Interfluve**
- B. Floodplain**
- C. Drumlin**
- D. Moraine**

The term that describes the area at the junction of two upland slopes is an interfluve. An interfluve acts as a ridge or elevated area between two valleys or streams, typically formed by the process of erosion and shaped by the landscape's topography. This feature is significant in hydrology and geomorphology as it influences water runoff and drainage patterns in a given area. In contrast, a floodplain refers to the flat area adjacent to a river that is subject to flooding, typically found at lower elevations along the courses of rivers. Drumlin and moraine are both landforms associated with glacial activity; drumlins are elongated hills formed by glacial deposits, while moraines are accumulations of debris deposited by glaciers. These terms do not pertain to the junction of upland slopes, clearly distinguishing interfluve as the accurate choice. Thus, identifying an interfluve is essential for understanding topographical relationships and watershed management in land studies.

4. Which of the following is NOT a hydric soil indicator?

- A. A12 thick dark surface**
- B. A11 depleted below dark surface**
- C. S3 highly organic**
- D. F3 depleted matrix**

The correct choice identifies an indicator that does not qualify as a hydric soil indicator. Hydric soils are defined as those that are formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part of the soil profile. In this case, a highly organic layer, such as S3, suggests significant organic matter accumulation, commonly found in peat or muck soils. While organic soils can be hydric, the specific designation of S3 is not an indicator that characterizes hydric conditions since it does not necessarily reflect the changes or features associated with saturation or reduced oxygen conditions over time. On the other hand, the other options represent indicators associated with hydric soils. An A12 thick dark surface indicates a rich organic layer typically formed under wetland conditions. The A11 depleted below dark surface shows evidence of gleying, indicating the presence of hydric conditions. Similarly, the F3 depleted matrix is indicative of anaerobic conditions due to saturation, resulting in the depletion of iron and other oxides. Each of these indicators reflects soil processes influenced by prolonged moisture, which is integral to defining hydric soils.

5. Identify a suborder of Mollisols.

- A. Alb
- B. Aq
- C. Ud
- D. All of the above**

Mollisols are a soil order characterized by their rich organic matter content, dark color, and good fertility, typically found in grassland regions. This order is further divided into suborders based on moisture regimes and other characteristics. The suborder designations for Mollisols include specific letters that indicate their properties: - The designation "Alb" indicates the presence of an albic horizon, which is typically light-colored and indicates leaching. - "Aq" signifies a Mollisol that has been influenced by water or has wet conditions, implying characteristics similar to those of aquic moisture regimes. - "Ud" refers to soil that is part of a humid climate, suggesting that it has a moisture regime that supports more consistent wetness throughout the year. Since all three choices provided, Alb, Aq, and Ud, are valid suborder classifications of Mollisols, selecting "All of the above" is indeed the correct choice. This highlights the diverse nature of Mollisols and their adaptability to various environmental conditions while maintaining their defining properties.

6. What is one reason to analyze the physical properties of soil?

- A. To determine crop rotation schedules**
- B. To evaluate soil compaction and aeration**
- C. To assess animal grazing patterns
- D. To prevent water runoff

Analyzing the physical properties of soil is essential for several agronomic and environmental purposes, one of which is evaluating soil compaction and aeration. Soil compaction occurs when soil particles are pressed together, reducing pore spaces and the ability of air and water to move through the soil. This can greatly affect plant growth, as roots require adequate aeration and water movement to thrive. By assessing the physical properties of soil, such as texture, structure, and bulk density, one can determine how compacted the soil is and whether it has a satisfactory level of aeration. This information is crucial for making decisions about soil management practices to enhance plant health and optimize crop yields. Well-aerated soils support root respiration and water infiltration, contributing positively to the ecological balance of the agricultural system. Other options, while relevant to soil management, do not directly relate to the analysis of physical properties in the same explicit way. For example, crop rotation schedules and animal grazing patterns are more closely aligned with the biological and management aspects of agriculture, whereas preventing water runoff pertains to hydrological characteristics and management strategies. Analyzing soil's physical properties directly influences the understanding of compaction and aeration, thus playing a critical role in productive soil management.

7. What are the primary soil textures?

- A. Sand, silt, clay**
- B. Loam, gravel, sand**
- C. Silt, clay, rock**
- D. Clay, chalk, silt**

The primary soil textures refer to the size of individual soil particles and are classified primarily into three categories: sand, silt, and clay. Sand consists of the largest particles among the three textures, usually having a gritty feel when rubbed between fingers. It provides good drainage and aeration but holds less water and nutrients. Silt has smaller particles than sand and feels smooth to the touch; it retains moisture better than sand and provides a balance of drainage and nutrient holding capacity. Clay has the smallest particles and feels sticky when wet; it has a high nutrient and moisture retention ability but can lead to poor drainage. These three textures combine to form various soil types, but they are fundamental components that characterize soil texture and influence numerous soil properties, such as fertility, water retention, and ease of cultivation. Understanding these textures is crucial for soil management decisions in agriculture and environmental conservation.

8. Which soil horizon typically contains the most nutrients?

- A. C horizon**
- B. B horizon**
- C. O horizon**
- D. E horizon**

The O horizon is often referred to as the organic horizon and is typically composed of organic material such as decomposed leaves, plant matter, and other organic residues. This layer is vital for nutrient availability because it is rich in nutrients that are essential for plant growth. Decomposition processes in the O horizon result in the formation of humus, which enhances the nutrient-holding capacity of the soil, improves soil structure, and contributes to the soil's fertility. The organic matter in the O horizon not only provides important nutrients directly but also promotes microbial activity, further aiding in the breakdown of materials and nutrient cycling. This makes the O horizon an important source of nutrients compared to the other soil horizons. In contrast, the C horizon contains parent material from which the soil develops and generally has low nutrient content. The B horizon is where minerals leached from the above horizons accumulate, and while it can contain some nutrients, it is often less nutrient-rich than the O horizon. The E horizon typically experiences significant leaching of minerals and nutrients, resulting in lower nutrient availability.

9. Why is it essential to evaluate cumulative thickness in mollic soils?

- A. To assess drainage capabilities**
- B. To determine suitability for agriculture**
- C. To identify weathering processes**
- D. To confirm presence of micromorphology**

Evaluating cumulative thickness in mollic soils is essential primarily because it helps determine the suitability for agriculture. Mollic soils are characterized by their rich organic matter content and favorable physical properties, making them highly fertile and productive. The cumulative thickness of the mollic epipedon, which is the upper layer of the soil, indicates how much of this nutrient-rich material is available for crops. A greater thickness often correlates with better soil health, nutrient retention, and moisture availability, all of which are critical factors for agricultural success. While aspects like drainage capabilities, weathering processes, and micromorphology are significant in soil science, they are secondary to the direct impact that cumulative thickness has on agricultural viability. Drainage is indeed important but is often influenced by other factors such as soil texture and structure rather than just the thickness of the mollic layer. Similarly, while weathering processes and micromorphology can provide valuable insights into soil formation and characteristics, they do not have the direct relationship to agricultural suitability that cumulative thickness does in the context of mollic soils. Thus, determining agricultural suitability remains the most critical aspect of evaluating cumulative thickness.

10. Which soil order is characterized by the presence of spodic horizons?

- A. Mollisol**
- B. Alfisol**
- C. Inceptisol**
- D. Spodosol**

The soil order characterized by the presence of spodic horizons is Spodosol. Spodic horizons are distinctive layers in the soil that contain illuvial accumulations of organic matter, aluminum, and iron, which can give the soil a dark color. These horizons typically form under conditions of leaching in humid climates, where mineral and organic materials are washed down through the soil profile due to high precipitation. Spodosols are most commonly found in forested regions, particularly in sandy or acidic soils where the process of podzolization, involving the leaching of base cations and the accumulation of iron and aluminum oxides and organic materials, occurs. This characteristic makes them quite different from other soil orders that do not develop such horizons. In contrast, Mollisols, Alfisols, and Inceptisols do not typically exhibit spodic horizons. Mollisols are known for their rich organic matter and dark topsoil, Alfisols for their clay-rich horizons that provide good fertility, and Inceptisols are younger soils that exhibit weak horizon development without the definitive spodic layers. Understanding this distinction is crucial for soil classification and its implications for land use, agriculture, and ecological management.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://soiljudgingnatl.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE