

Society of Actuaries (SOA) PA Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

1. In Lasso Regression, what is the value of lambda typically set to for a shrinkage effect?

- A. 0**
- B. 1**
- C. 0.01**
- D. 0.5**

2. Why is regularization used in statistical modeling?

- A. To increase the flexibility of the model**
- B. To reduce noise by increasing the model's variance**
- C. To add a penalty term that limits the impact of coefficients**
- D. To ensure that coefficients are unaffected by lambda value**

3. What are the control parameters typically associated with decision trees?

- A. cp, minbucket, learning rate, maxdepth**
- B. cp, processing time, maxdepth, error rate**
- C. cp, minbucket, maxdepth, minsplit**
- D. minsplit, growth factor, cp, threshold**

4. How can one assess the RMSE on the test data compared to the training data?

- A. By calculating the absolute RMSE difference**
- B. By observing the RMSE trend over epochs**
- C. By assessing the percent increase in RMSE**
- D. By comparing model accuracy percentage**

5. In the context of analyzing a binary target variable, what is the significance of the proportion calculated in a data summary?

- A. It indicates the frequency of the first outcome**
- B. It reveals the mean value of the predictor**
- C. It assesses the relationship strength**
- D. It describes the skewness of the data**

6. Which type of variables can LASSO regularization be applied to after processing?

- A. Only numerical variables**
- B. Only categorical variables**
- C. Both numerical and categorical variables**
- D. Neither numerical nor categorical variables**

7. How is accuracy defined in terms of a confusion matrix?

- A. $(TP + TN) / N$**
- B. $(FP + FN) / N$**
- C. $(TP) / (TP + FN)$**
- D. $(TN) / (TN + FP)$**

8. Which penalty does Ridge Regression use for its coefficients?

- A. The sum of the absolute values**
- B. The sum of the squares of the estimated coefficients**
- C. Proportional reduction of coefficients**
- D. No penalty applied**

9. What does an interaction describe in statistical modeling?

- A. A situation where two variables have an additive effect**
- B. A scenario where one variable affects another independently**
- C. A case where the effect of one variable depends on another variable's state**
- D. An overall correlation between multiple independent variables**

10. What is the primary goal of using BIC in model selection?

- A. To minimize the likelihood function**
- B. To select the model with the lowest complexity**
- C. To select the model with the highest R-squared value**
- D. To maximize the number of parameters**

Answers

SAMPLE

1. C
2. C
3. C
4. C
5. A
6. C
7. A
8. B
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. In Lasso Regression, what is the value of lambda typically set to for a shrinkage effect?

- A. 0
- B. 1
- C. 0.01**
- D. 0.5

In Lasso Regression, the value of lambda plays a critical role in determining the strength of the penalty applied to the coefficients of the regression model. The purpose of using a non-zero lambda is to apply a penalty that encourages the model to reduce the magnitude of coefficients, effectively shrinking them towards zero. This shrinkage effect helps to prevent overfitting, especially in scenarios with a large number of predictors relative to the number of observations. Typically, a small positive value for lambda is desired to achieve a balance between fitting the data well and maintaining a model that is generalizable. Setting lambda to a very low value, such as 0.01, enables the regularization effect of Lasso without overly constraining the coefficients. This allows some variables to retain influence while still benefiting from the shrinkage that minimizes the risk of overfitting. Setting lambda to inappropriate values, such as 0 (which would remove any penalty and lead to ordinary least squares regression) or excessively high values (which could lead to too much shrinkage and potentially eliminate important predictors), would not provide the desired balance. Therefore, a lambda value of 0.01 is commonly used in practice to ensure effective regularization while allowing for meaningful contributions from significant variables.

2. Why is regularization used in statistical modeling?

- A. To increase the flexibility of the model
- B. To reduce noise by increasing the model's variance
- C. To add a penalty term that limits the impact of coefficients**
- D. To ensure that coefficients are unaffected by lambda value

Regularization is a technique used in statistical modeling to prevent overfitting while maintaining a model's predictive power. The correct answer highlights how regularization works by adding a penalty term to the loss function. This penalty discourages overly large coefficients in the model. By limiting the impact of individual coefficients, regularization helps to stabilize the model, making it less sensitive to the fluctuations and noise in the training data. This balancing act is crucial because while a flexible model may fit the training data closely, it can also capture irregular patterns that do not generalize well to unseen data. The penalty term introduced by regularization techniques, such as Lasso (which uses L1 regularization) or Ridge (which uses L2 regularization), is a strategic tool to enforce this control over the coefficients, leading to more robust model performance in practice. In contrast, other options do not accurately identify the primary purpose of regularization. Increasing model flexibility or reducing noise by increasing variance diverges from the fundamental goal, which is to promote a more generalizable fit. Additionally, the statement about coefficients being unaffected by the lambda value is misleading; in fact, the lambda value is essential in regulating how much penalty is imposed, thereby directly influencing the coefficients. Thus, recognizing

3. What are the control parameters typically associated with decision trees?

- A. cp, minbucket, learning rate, maxdepth
- B. cp, processing time, maxdepth, error rate
- C. cp, minbucket, maxdepth, minsplits**
- D. minsplits, growth factor, cp, threshold

The control parameters typically associated with decision trees include the complexity parameter (cp), minbucket, maxdepth, and minsplits. The complexity parameter (cp) is crucial because it helps prevent overfitting by imposing a penalty on the number of splits in the tree. By tuning cp, you can effectively balance model complexity and predictive accuracy. Minbucket defines the minimum number of observations that a terminal node must have, which serves to ensure that the splits create sufficient data in each leaf to make reliable predictions. Maxdepth sets the maximum number of levels in the tree. Limiting the depth of the tree is important to prevent overfitting, as deeper trees can capture more noise within the data, rather than the underlying patterns. Minsplit refers to the minimum number of observations required to split a node. This parameter helps in controlling the growth of the tree and ensuring that splits are made only when there is a sufficient quantity of data to justify the branching. These parameters together provide a robust framework for optimizing the decision tree's structure and performance, enabling effective data analysis while minimizing the risk of overfitting.

4. How can one assess the RMSE on the test data compared to the training data?

- A. By calculating the absolute RMSE difference
- B. By observing the RMSE trend over epochs
- C. By assessing the percent increase in RMSE**
- D. By comparing model accuracy percentage

To assess the Root Mean Square Error (RMSE) on the test data compared to the training data, evaluating the percent increase in RMSE provides a meaningful insight into how well the model generalizes to unseen data. When RMSE is calculated for both the training set and the test set, a percent increase can show the degree to which the model's performance degrades when faced with new, unseen data compared to the data it was trained on. This metric helps in understanding overfitting. If the RMSE on the training data is significantly lower than on the test data, this indicates that the model has learned the noise in the training dataset rather than the underlying patterns, which is what overfitting means. Therefore, assessing the percent increase gives quantifiable evidence of the model's ability to generalize and highlights any issues in the training process that need to be addressed, such as adjustments in model complexity, data preprocessing, or selection of features. While other methods such as calculating the absolute RMSE difference might provide a simple numerical disparity, they do not offer insight into the proportional change relative to the training set. Observing the RMSE trend over epochs is useful for monitoring training but does not directly compare performance between training and testing datasets. Additionally, comparing

5. In the context of analyzing a binary target variable, what is the significance of the proportion calculated in a data summary?

- A. It indicates the frequency of the first outcome**
- B. It reveals the mean value of the predictor**
- C. It assesses the relationship strength**
- D. It describes the skewness of the data**

The significance of the proportion calculated in a data summary when analyzing a binary target variable lies in its ability to indicate the frequency of the first outcome. In binary classification problems, the target variable has two categories (e.g., success/failure, yes/no). The proportion tells you how often one of these outcomes occurs relative to the total number of observations. For example, if the target variable is "success" and you find that 60% of the cases are classified as success, this proportion effectively helps underline the prevalence of that outcome within the dataset. This information can be particularly useful for understanding the behavior of the binary variable, driving further analysis, and making informed decisions on how to approach modeling, particularly in relation to potential class imbalances. The other options do not directly relate to the calculation of the proportion in a data summary. The mean value of the predictor addresses different types of analysis related to numerical variables, relationship strength typically looks at correlation or regression coefficients rather than proportions, and skewness is about the distribution shape of data rather than the frequency of outcomes within a binary context. This makes the proportion a vital statistic for interpreting the outcomes' frequency effectively.

6. Which type of variables can LASSO regularization be applied to after processing?

- A. Only numerical variables**
- B. Only categorical variables**
- C. Both numerical and categorical variables**
- D. Neither numerical nor categorical variables**

LASSO (Least Absolute Shrinkage and Selection Operator) regularization is a technique used in regression analysis to enhance prediction accuracy and interpretability by selecting variables and reducing the complexity of the model. After processing, LASSO can indeed be applied to both numerical and categorical variables. For numerical variables, LASSO directly applies its regularization procedure as it deals with continuous data. The regularization process penalizes the absolute size of the coefficients in linear regression, effectively driving some of them to zero, which allows for variable selection in models. For categorical variables, they are typically converted into numerical representations using techniques such as one-hot encoding. This process transforms categorical data into a format that can be used in machine learning algorithms, including LASSO. After encoding, each category becomes a separate binary variable (0 or 1), and LASSO can then be applied to these numerical representations just as it would with numerical variables. Thus, the ability to effectively handle both types of variables after appropriate processing is what makes LASSO a versatile tool in regression analysis.

7. How is accuracy defined in terms of a confusion matrix?

- A. (TP + TN) / N**
- B. (FP + FN) / N**
- C. (TP) / (TP + FN)**
- D. (TN) / (TN + FP)**

Accuracy in the context of a confusion matrix is defined as the proportion of true results (both true positives and true negatives) among the total number of cases examined. This is represented mathematically as $(TP + TN) / N$, where TP stands for true positives, TN for true negatives, and N is the total number of observations. This formula captures the overall correctness of the model's predictions by including both the instances where the model correctly predicts positive cases (TP) and the instances where it correctly predicts negative cases (TN). Therefore, when using accuracy as a performance metric, it provides a holistic view of how well the model is performing across all classifications, making it an important measure for evaluating binary classification models. The other options represent different metrics related to the confusion matrix: - The formula that uses $(FP + FN)$ calculates the proportion of incorrect predictions, which is not a measure of accuracy but rather reflects the errors made by the model. - The formula that displays $TP / (TP + FN)$ is known as Precision, measuring the correctness of positive predictions only. - The formula $TN / (TN + FP)$ indicates Specificity, which assesses the model's ability to correctly identify negative cases. These distinctions underscore that accuracy combines true positive and true negative

8. Which penalty does Ridge Regression use for its coefficients?

- A. The sum of the absolute values**
- B. The sum of the squares of the estimated coefficients**
- C. Proportional reduction of coefficients**
- D. No penalty applied**

Ridge Regression utilizes a penalty that is applied to the sum of the squares of the estimated coefficients, which serves to shrink the coefficients towards zero. This method is especially beneficial when dealing with multicollinearity in the data or when the model has a high number of predictors relative to the number of observations. By adding this L2 regularization term, Ridge Regression effectively helps to prevent overfitting by penalizing large coefficients, which can lead to a more robust model during prediction. The inclusion of this penalty term not only stabilizes the estimation process but also improves the model's generalization capabilities by encouraging smaller and more evenly distributed coefficient values. Thus, Ridge Regression's distinctive approach relies directly on this squared coefficient penalty, making it a key characteristic of the method.

9. What does an interaction describe in statistical modeling?

- A. A situation where two variables have an additive effect
- B. A scenario where one variable affects another independently
- C. A case where the effect of one variable depends on another variable's state**
- D. An overall correlation between multiple independent variables

The correct understanding of an interaction in statistical modeling is that it describes a situation where the effect of one variable on the outcome variable is dependent on the value of another variable. This means that the relationship between the independent variable and the dependent variable changes when another independent variable changes. For instance, consider a model assessing the impact of study hours and tutoring on students' test scores. If the effect of tutoring on test scores increases with more study hours, then there is an interaction between study hours and tutoring. Thus, an interaction indicates that the combined influence of the variables on the outcome is not simply additive; instead, it reveals a more complex relationship where the impact of one variable is modified by another. The other choices do not accurately capture this concept. The additive effect describes a straightforward cumulative impact without interaction, independent effects imply that the variables do not influence each other at all, and an overall correlation refers to relationships among multiple independent variables without demonstrating causality or dependency between them.

10. What is the primary goal of using BIC in model selection?

- A. To minimize the likelihood function
- B. To select the model with the lowest complexity**
- C. To select the model with the highest R-squared value
- D. To maximize the number of parameters

The goal of using the Bayesian Information Criterion (BIC) in model selection is to select a model that balances fit and complexity. BIC is designed to penalize models for having too many parameters, thus discouraging overfitting. It incorporates a penalty for the number of parameters in the model, which helps to ensure that simpler models are favored unless more complex models provide a significantly better fit to the data. By focusing on this balance between model accuracy and complexity, BIC aids in identifying the most appropriate model from a set of candidates, ultimately contributing to better generalization to new data. The other options do not align with the primary goal of BIC. Minimizing the likelihood function, for instance, could lead to overly complex models as it does not account for the number of parameters. Similarly, selecting the model with the highest R-squared value can also result in overfitting, as high R-squared values can be misleading due to a large number of predictors. Lastly, maximizing the number of parameters contradicts the purpose of BIC, which aims to reduce complexity in model selection.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://soa-pa.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE