

Skywest ERJ Cockpit Qualification (CQ) and Knowledge Validation (KV) Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What is the process called when reviewing systems and flight crew coordination before takeoff?**
 - A. Pre-flight checklist**
 - B. Flight briefing**
 - C. Operations review**
 - D. Safety protocol**
- 2. What should you do after the EICAS displays an APU FUEL SOV FAIL Caution message?**
 - A. Immediately turn off the APU**
 - B. Set the APU switch to ON for 2 seconds**
 - C. Wait for 90 seconds before taking any action**
 - D. Turn the APU switch OFF after waiting 2 seconds**
- 3. What should be done if battery voltage is less than 21.0 V?**
 - A. Power up the system**
 - B. Write it up in eAML in Flightview**
 - C. Disconnect the batteries**
 - D. Continue the flight**
- 4. What is an essential component of maintaining cockpit discipline?**
 - A. Effective communication among crew members**
 - B. Strict adherence to personal space in the cockpit**
 - C. Minimizing technology use during flight**
 - D. Ensuring all crew members are silent during critical phases**
- 5. If RCCs are reported as 3, what is the maximum crosswind component for landing?**
 - A. 10kt**
 - B. 12kt**
 - C. 15kt**
 - D. 20kt**

6. During climb, what is the recommended speed to fly in response to reported moderate turbulence ahead?

- A. 180 knots**
- B. 250 knots**
- C. 320 knots**
- D. 350 knots**

7. Which of the following should NOT be done on a power down procedure with passengers on board?

- A. Conduct a safety briefing**
- B. Power down the aircraft**
- C. Clear the cabin**
- D. Perform maintenance checks**

8. What is the maximum altitude that the ERJ 175 can reach?

- A. 35,000 feet**
- B. 40,000 feet**
- C. 41,000 feet**
- D. 45,000 feet**

9. What does "RTO" stand for and its relevance during takeoff?

- A. Reject Takeoff; a procedure for an anomaly before V1**
- B. Runway Time Optimization; a method for better landings**
- C. Rapid Takeoff; a technique to shorten departure time**
- D. Ready Takeoff; a checklist step before departing**

10. Why is monitoring fuel status crucial during flights?

- A. It helps to reduce cabin noise levels**
- B. It is only needed for long flights over oceans**
- C. It enables timely decisions regarding landing options**
- D. It allows for better passenger management during the flight**

Answers

SAMPLE

1. B
2. D
3. B
4. A
5. C
6. B
7. B
8. C
9. A
10. C

SAMPLE

Explanations

SAMPLE

1. What is the process called when reviewing systems and flight crew coordination before takeoff?

- A. Pre-flight checklist**
- B. Flight briefing**
- C. Operations review**
- D. Safety protocol**

The process of reviewing systems and flight crew coordination before takeoff is referred to as a flight briefing. During the flight briefing, crew members discuss important information pertinent to the upcoming flight, including the planned route, weather conditions, potential hazards, and roles and responsibilities of each team member. This collaborative communication helps to ensure that everyone on the flight crew is aligned and prepared for the challenges that may arise during the flight. Prior to taxiing, conducting a thorough flight briefing enhances situational awareness and coordination among the crew, which is vital for safe flight operations. It serves as an opportunity for team members to ask questions, clarify procedures, and address any concerns, thereby fostering a solid understanding of the flight plan and operations. In contrast, a pre-flight checklist is primarily focused on the aircraft's equipment and systems to ensure they are in proper working order. An operations review might emphasize the broader operational policies or standards rather than the specific briefing needed for crew coordination. Safety protocols could encompass a variety of guidelines and procedures but do not specifically pertain to the targeted review of flight crew coordination and system checks that occur in a flight briefing.

2. What should you do after the EICAS displays an APU FUEL SOV FAIL Caution message?

- A. Immediately turn off the APU**
- B. Set the APU switch to ON for 2 seconds**
- C. Wait for 90 seconds before taking any action**
- D. Turn the APU switch OFF after waiting 2 seconds**

When the EICAS (Engine Indication and Crew Alerting System) displays an "APU FUEL SOV FAIL" caution message, it indicates that there is an issue with the APU's fuel shutoff valve. In this situation, the appropriate response is to turn the APU switch OFF after waiting a brief period of 2 seconds. This wait time allows the system to stabilize and properly assess the situation. Turning off the APU is necessary to prevent potential further issues, such as fuel leakage or failure of the APU system, which could lead to safety concerns. By deactivating the APU, the aircraft's systems can be evaluated, and maintenance can be performed when on the ground without risking further complications. The other actions may not contribute effectively to resolving the caution displayed. For instance, just turning on the APU switch for 2 seconds would not address the underlying problem and could potentially exacerbate fuel system issues. Simply waiting for 90 seconds without taking any action does not provide a proactive approach to handling the caution, which is crucial for safety and operational integrity.

3. What should be done if battery voltage is less than 21.0 V?

- A. Power up the system**
- B. Write it up in eAML in Flightview**
- C. Disconnect the batteries**
- D. Continue the flight**

When battery voltage drops below 21.0 V, it signals a potential issue with the electrical system that needs to be documented for maintenance review. Writing it up in the eAML (Electronic Aircraft Maintenance Log) in Flightview serves multiple purposes. First, it ensures that the maintenance team is alerted to the problem, allowing them to take appropriate action before the aircraft is used for subsequent flights. This is crucial for the safety and readiness of the aircraft. Additionally, it creates a formal record for compliance and future reference, which is essential in aviation operations. While it may be tempting to consider other actions like powering up the system or continuing the flight, doing so without addressing the battery voltage concern could lead to more significant issues during flight operations. Disconnecting the batteries might not be practical or necessary in most situations, as the focus should be on documenting the situation rather than taking drastic measures.

4. What is an essential component of maintaining cockpit discipline?

- A. Effective communication among crew members**
- B. Strict adherence to personal space in the cockpit**
- C. Minimizing technology use during flight**
- D. Ensuring all crew members are silent during critical phases**

Effective communication among crew members is fundamental to maintaining cockpit discipline because it fosters a collaborative environment where all members can share vital information, clarify intentions, and make informed decisions. In a high-stakes setting like the cockpit, where situational awareness and coordination are critical, clear and frequent communication helps prevent misunderstandings and promotes a unified approach to flight operations. When crew members engage in open dialogue, it enhances teamwork and encourages mutual respect, allowing each individual to contribute their knowledge and expertise. This exchange is crucial during normal operations as well as in abnormal or emergency situations, where decisive, coordinated actions can significantly impact safety and performance. While personal space, minimizing technology use, and silence during critical phases might seem relevant in promoting discipline, they do not fundamentally address the need for collaboration, shared understanding, and coordinated action that effective communication provides. These elements, while important, cannot replace the critical aspect of communication that is essential for successful cockpit operations.

5. If RCCs are reported as 3, what is the maximum crosswind component for landing?

- A. 10kt**
- B. 12kt**
- C. 15kt**
- D. 20kt**

When Runway Condition Codes (RCCs) are reported as 3, it indicates that the runway is considered to have snow or ice, which results in a reduced friction level. Under these conditions, knowing the maximum crosswind component for landing is critical for ensuring safety and control during touchdown. For RCC 3, the maximum crosswind component is typically well defined in the aircraft's operating manual. The operational limits take into account the decreased performance of the aircraft on slippery surfaces. Therefore, the value of 15 knots reflects these operational parameters, providing a conservative limit that maintains safety margins while allowing for some crosswind operations under compromised runway conditions. This limit is determined through extensive testing and reflects the aircraft's capabilities while considering the potential reduction in braking effectiveness and directional control on a less-than-ideal runway surface. Adhering to this maximum crosswind component ensures pilots can land the aircraft safely even in adverse weather conditions, minimizing the risk of skidding or loss of control on landing.

6. During climb, what is the recommended speed to fly in response to reported moderate turbulence ahead?

- A. 180 knots**
- B. 250 knots**
- C. 320 knots**
- D. 350 knots**

The recommended speed to fly in response to reported moderate turbulence ahead is 250 knots. This speed is often referred to as "turbulence penetration speed," which is specifically designed to provide a stable and manageable flight experience during turbulent conditions. When flying into turbulence, maintaining a speed around this range helps to balance the need for control with passenger comfort, as it allows the aircraft to respond adequately to air disturbances without excessive control inputs that could lead to further discomfort or structural stress. Flying at a higher speed can result in increased stress on the airframe and may lead to more pronounced turbulence sensations for passengers and crew. Conversely, flying at a speed that is too low can result in a loss of control or increased susceptibility to stall conditions. Thus, 250 knots is seen as an optimal compromise, as it allows the aircraft to effectively navigate through moderate turbulence while maintaining safety and comfort standards.

7. Which of the following should NOT be done on a power down procedure with passengers on board?

- A. Conduct a safety briefing**
- B. Power down the aircraft**
- C. Clear the cabin**
- D. Perform maintenance checks**

The correct reasoning for not powering down the aircraft while passengers are on board is primarily centered around safety and the welfare of the passengers. Conducting a power down procedure while passengers are still in the cabin can create various risks and challenges, such as potential evacuation needs or loss of essential cabin systems that ensure passenger comfort and safety. When passengers are on board, the systems in the aircraft, including lighting, air circulation, and emergency systems, must remain operational to ensure the safety of everyone aboard. Thus, maintaining power is crucial until passengers are safely deplaned. Other actions like conducting a safety briefing, clearing the cabin, and performing maintenance checks can be done effectively while the aircraft remains powered up, as these tasks do not pose the same immediate risk to passenger safety as powering down would. Powering down prematurely could introduce confusion and potential safety hazards for those still aboard.

8. What is the maximum altitude that the ERJ 175 can reach?

- A. 35,000 feet**
- B. 40,000 feet**
- C. 41,000 feet**
- D. 45,000 feet**

The ERJ 175 is designed with a maximum operating altitude of 41,000 feet. This altitude is a critical specification for aircraft performance, impacting aspects such as engine efficiency, fuel consumption, and cabin pressurization. Flying at this maximum altitude allows for optimal fuel economy and the ability to avoid turbulent weather associated with lower altitudes. Understanding this characteristic is essential for pilots as it influences flight planning, operational limits, and overall safety. The design parameters established by the manufacturer consider various factors, including aerodynamic capabilities and engine performance, ensuring that the aircraft can safely operate at this altitude under normal conditions. This distinguishes the ERJ 175 from other regional jets with different maximum operating altitudes.

9. What does "RTO" stand for and its relevance during takeoff?

- A. Reject Takeoff; a procedure for an anomaly before V1**
- B. Runway Time Optimization; a method for better landings**
- C. Rapid Takeoff; a technique to shorten departure time**
- D. Ready Takeoff; a checklist step before departing**

"RTO" stands for "Reject Takeoff," which is a critical procedure implemented by flight crews when an anomaly occurs before reaching V1, the decision speed during takeoff. The relevance of RTO during takeoff is significant, as V1 represents the point at which the pilot must decide to continue the takeoff or reject it. If an issue arises before this speed—such as a sudden engine failure, system malfunction, or any situation that could compromise safety—the pilot can initiate an RTO to safely bring the aircraft to a stop on the runway. This procedure is vital for ensuring the safety of the aircraft and its occupants, as it allows the crew to respond quickly and effectively to potential emergencies. The RTO is part of standard operating procedures that enhance situational awareness and safety during critical phases of flight, reinforcing pilots' training in recognizing and reacting appropriately to various flight conditions.

10. Why is monitoring fuel status crucial during flights?

- A. It helps to reduce cabin noise levels**
- B. It is only needed for long flights over oceans**
- C. It enables timely decisions regarding landing options**
- D. It allows for better passenger management during the flight**

Monitoring fuel status during flights is essential primarily because it enables timely decisions regarding landing options. Understanding the current fuel levels allows pilots to accurately assess their range and determine whether they can safely reach their intended destination or if diversion to an alternate airport is necessary due to unforeseen circumstances such as weather, mechanical issues, or air traffic control delays. This awareness directly impacts flight safety and operational efficiency, ensuring that pilots are prepared for various scenarios and can effectively manage the flight path as needed. While other factors such as passenger management and cabin noise levels play roles in the overall flight experience, they do not directly relate to the critical operational need for fuel status awareness in maintaining safety and making effective decisions during the flight. Monitoring fuel usage is vital for all flights, not limited to long over-ocean routes, as unexpected delays or emergencies can occur at any time in any flight segment.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://skywesterjcqkv.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE