

SkyWest CRJ 200 Limitations Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What is the minimum brake energy required for landing in the CRJ 200?**
 - A. Must not exceed calculated energy limits**
 - B. Must be assessed based on environmental factors**
 - C. Must align with standard industry practices**
 - D. Must be within the certified weight limits**
- 2. What is the Vfe for flap setting 20?**
 - A. 170 KIAS**
 - B. 185 KIAS**
 - C. 215 KIAS**
 - D. 200 KIAS**
- 3. What is the minimum spoiler speed above Vref for the CRJ 200?**
 - A. Vref +10**
 - B. Vref +15**
 - C. Vref +17**
 - D. Vref +20**
- 4. While using APU bleed air to start both engines, the operating engine's thrust must not exceed what percentage of N2?**
 - A. 50% N2**
 - B. 60% N2**
 - C. 70% N2**
 - D. 80% N2**
- 5. What temperature must the airplane be cold soaked at for more than 8 hours to require engine motoring?**
 - A. -20°C**
 - B. -25°C**
 - C. -30°C**
 - D. -35°C**

6. What is the maximum altitude for APU bleed use?

- A. 10,000 ft**
- B. 12,000 ft**
- C. 15,000 ft**
- D. 18,000 ft**

7. What is the maximum altitude for starting the APU?

- A. 28,000 ft**
- B. 29,000 ft**
- C. 30,000 ft**
- D. 31,000 ft**

8. What is the maximum tailwind component permitted for the SkyWest CRJ 200?

- A. 5 kts**
- B. 10 kts**
- C. 15 kts**
- D. 20 kts**

9. What is the maximum authorized altitude for the CRJ 200?

- A. FL 360**
- B. FL 380**
- C. FL 370**
- D. FL 400**

10. What is the lowest value of Vfe among flap settings?

- A. 185 KIAS**
- B. 170 KIAS**
- C. 200 KIAS**
- D. 215 KIAS**

Answers

SAMPLE

1. A
2. C
3. C
4. C
5. C
6. C
7. C
8. B
9. C
10. A

SAMPLE

Explanations

SAMPLE

1. What is the minimum brake energy required for landing in the CRJ 200?

- A. Must not exceed calculated energy limits**
- B. Must be assessed based on environmental factors**
- C. Must align with standard industry practices**
- D. Must be within the certified weight limits**

The minimum brake energy required for landing in the CRJ 200 is determined by the calculated energy limits, which take into account factors such as aircraft weight, speed at touchdown, and environmental conditions. This ensures that the brakes can effectively dissipate the energy generated during landing without exceeding the limits set by the manufacturer. Adherence to these calculated limits is crucial to prevent brake failure or reduced performance, which can compromise safety during landing operations. While environmental factors, industry practices, and weight limits do play roles in overall landing performance assessment, they are not the specific determinant of minimum brake energy. The calculated energy limits are specifically designed to ensure that the braking system operates safely and efficiently within its designed parameters, thus prioritizing safety and aircraft integrity during landings.

2. What is the Vfe for flap setting 20?

- A. 170 KIAS**
- B. 185 KIAS**
- C. 215 KIAS**
- D. 200 KIAS**

The Vfe, or maximum flap extended speed, for a specific flap setting is crucial for safe operations within the aircraft's limitations. For the CRJ 200, the Vfe for flap setting 20 is indeed 200 KIAS. This speed ensures that the aircraft can safely maintain its configuration without risking damage to the flaps or encountering any aerodynamic issues. At Vfe, the aircraft is permitted to be flown with the flaps extended, allowing for a controlled maneuverability during approaches and landings. Flying above this speed with the flaps extended may lead to situations that jeopardize the safety of the aircraft, such as flap malfunction or structural damage. Understanding this limitation is integral to the pilot's overall operational proficiency and safety management while flying the CRJ 200.

3. What is the minimum spoiler speed above Vref for the CRJ 200?

- A. Vref +10**
- B. Vref +15**
- C. Vref +17**
- D. Vref +20**

The minimum spoiler speed above Vref for the CRJ 200 is Vref +17. This limitation is critical because it ensures that the aircraft has sufficient airspeed for the effective deployment of spoilers, which are used to increase drag and decrease lift. Deploying the spoilers at speeds lower than the required threshold could lead to undesirable aerodynamic effects, potentially compromising control and stability during critical phases of flight, such as approach and landing. Understanding this limitation is vital for pilots to maintain safety and performance standards during operations. The choice of Vref +17 specifically accounts for the airspeed needed to safely operate the spoilers without adversely impacting flight control. Other options like Vref +10, +15, or +20 do not correspond with the established minimum spoiler speed and thus are not the correct values to ensure optimal safety and performance.

4. While using APU bleed air to start both engines, the operating engine's thrust must not exceed what percentage of N2?

- A. 50% N2**
- B. 60% N2**
- C. 70% N2**
- D. 80% N2**

When starting both engines using APU bleed air, it is crucial to limit the thrust of the operating engine to ensure that the APU (Auxiliary Power Unit) can provide adequate bleed air pressure for the engine start process. The specified limit of 70% N2 is established because exceeding this threshold can reduce the APU's capability to maintain the necessary pressure and airflow for successful engine starting. Typically, the N2 percentage reflects the rotational speed of the high-pressure compressor section of the engine, which is imperative for creating the required conditions for starting. Keeping the operating engine's thrust at or below 70% N2 ensures that there is sufficient bleed air flow without overloading the APU, thus allowing for a smooth and reliable engine start. This limitation is pivotal for maintaining safety and operational efficiency during engine starts.

5. What temperature must the airplane be cold soaked at for more than 8 hours to require engine motoring?

- A. -20°C
- B. -25°C
- C. -30°C**
- D. -35°C

The correct answer is based on the operational guidelines for the CRJ 200, which dictate procedures for starting engines after exposure to low temperatures. When the airplane has been cold-soaked at -30°C for more than 8 hours, it can lead to the possibility of fuel slushing in the fuel lines and potential challenges with engine start due to the low viscosity of the oil. This cold-soaking condition necessitates motoring the engines to verify oil pressure and facilitate fuel flow before attempting to start in order to ensure a safe and reliable engine start. This procedure is important for maintaining engine performance and preventing damage caused by improperly prepared low-temperature starts. By contrast, temperatures above -30°C do not generally require the same precautions, as the risk of issues during start-up diminishes with higher ambient temperatures. Thus, anything warmer would not fall under the same requirement for engine motoring.

6. What is the maximum altitude for APU bleed use?

- A. 10,000 ft
- B. 12,000 ft
- C. 15,000 ft**
- D. 18,000 ft

The maximum altitude for APU bleed use is set at 15,000 feet. This limitation is in place to ensure the safe and efficient operation of the aircraft's Auxiliary Power Unit (APU). Above this altitude, the performance of the APU can be compromised due to the reduced ambient air density, which affects both combustion efficiency and the ability to provide necessary pneumatic pressure for bleed air systems. In operation, the APU provides critical bleed air for various systems, including environmental control and engine start assistance. At altitudes lower than 15,000 feet, the APU can function effectively within its operating parameters, ensuring that all systems reliant on bleed air are provided with sufficient pressure and flow. However, exceeding the specified altitude can lead to insufficient bleed air performance, which might impact the operation of essential systems and increase the risk of overheating or failure. Understanding these limitations is vital for pilots and operational personnel to maintain safety and performance throughout all phases of flight. This altitude limitation directly relates to the design and operational capabilities of the APU, emphasizing the need for adherence to manufacturer specifications.

7. What is the maximum altitude for starting the APU?

- A. 28,000 ft
- B. 29,000 ft
- C. 30,000 ft**
- D. 31,000 ft

The maximum altitude for starting the APU (Auxiliary Power Unit) in a CRJ 200 is indeed 30,000 feet. This limitation is important because the APU has performance parameters that dictate its operational capabilities at various altitudes. At altitudes above this threshold, the APU may not function effectively or provide the necessary power due to decreased atmospheric pressure and reduced air density. This altitude limit is set to ensure reliable operation of the APU, which is used for generating electrical power and providing air conditioning prior to takeoff or after landing when the main engines are not operational. Understanding these limitations is critical for safe and efficient aircraft operation, as exceeding these limits could lead to insufficient APU performance or potential inoperative conditions when needed.

8. What is the maximum tailwind component permitted for the SkyWest CRJ 200?

- A. 5 kts
- B. 10 kts**
- C. 15 kts
- D. 20 kts

The maximum tailwind component permitted for the SkyWest CRJ 200 is indeed 10 knots. This limitation is critical for operational safety and performance considerations. A tailwind can have significant effects on takeoff and landing distances, as it increases the ground speed of the aircraft during these phases. With a tailwind component exceeding the specified limit, the aircraft may require longer distances to safely take off or land, which can be especially concerning in adverse weather or on shorter runways. The limitation helps ensure that the aircraft remains within safe performance margins, thereby minimizing the risk of overrunning the runway or encountering difficulties during these vital flight phases. Understanding this limitation is essential for pilots to ensure they adhere to the operational guidelines set forth for the CRJ 200, promoting safe and efficient flight operations.

9. What is the maximum authorized altitude for the CRJ 200?

- A. FL 360
- B. FL 380
- C. FL 370**
- D. FL 400

The maximum authorized altitude for the CRJ 200 is FL 370. This figure is established by the aircraft's design and operational capabilities, ensuring that it operates efficiently within its performance envelope. At this altitude, the aircraft can maintain optimal engine performance and fuel efficiency while adhering to safety regulations set forth by aviation authorities. Understanding the limitations of the aircraft is crucial for both flight planning and operational safety. For the CRJ 200, maintaining a ceiling of FL 370 helps to prevent potential issues such as hypoxia and performance degradation that could occur at higher altitudes, which the aircraft is not designed to handle safely. This limitation is an essential aspect of the aircraft's operational procedures and must be adhered to by pilots and operational personnel.

10. What is the lowest value of Vfe among flap settings?

- A. 185 KIAS**
- B. 170 KIAS
- C. 200 KIAS
- D. 215 KIAS

The lowest value of Vfe, which stands for the maximum flap extended speed, is crucial for safe aircraft operations. It indicates the maximum speed at which the flaps can be extended without risking structural damage or impacting flight performance. In the context of the SkyWest CRJ 200, the value of 185 KIAS corresponds to the maximum flap extended speed for the flaps in the landing configuration. Understanding the importance of this speed helps pilots ensure that they do not exceed this limitation during operations involving flap extension, such as during approach and landing phases. Exceeding Vfe can lead to adverse aerodynamic effects and potential structural damage to the aircraft's wings due to increased drag and stress. Other values listed, such as 170 KIAS, 200 KIAS, and 215 KIAS, do not represent the maximum speed at which flaps can be safely extended for landing configurations on the CRJ 200. While they may represent flap speeds for other configurations or criteria, they do not reflect the lowest Vfe value for the settings in question. By adhering to the correct Vfe of 185 KIAS, pilots are better positioned to safely conduct their flights while managing the aircraft's aerodynamic limits.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://skywestcrj200lim.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE