Skycoaster Site Controller Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. What could happen if a flight were landed with the hydraulic landing unit setting too light?
 - A. The rope could snap
 - B. The rope could be pulled far beyond the low point
 - C. The landing would be smoother
 - D. The flight would be aborted
- 2. What must be checked after a snap-back incident?
 - A. The hydraulic landing unit alone
 - B. The Perlon rope only
 - C. The lander for a mis-spool
 - D. The entire Skycoaster system
- 3. What does the flight crew refer to as 'AC'?
 - A. Assistant Coordinator
 - **B.** Air Controller
 - C. Aerial Command
 - **D.** Aircraft Coordinator
- 4. Which of the following should NOT be done if broken wires are discovered?
 - A. Software updates to the systems
 - B. Continuing operations as usual
 - C. Immediate repair or replacement
 - D. Conducting a follow-up inspection
- 5. In a triple flight, where should the tallest flyer be arranged?
 - A. On the left
 - B. On the right
 - C. In the middle
 - D. At the back

- 6. True or False: The AC is responsible for ensuring safety announcements are made before proceeding with operations.
 - A. True
 - **B.** False
 - C. Only during emergencies
 - D. Only if there is a malfunction
- 7. What is required to ensure safety before launching a flight?
 - A. Daily inspection of equipment
 - B. Three complete practice runs
 - C. A review of flight cards
 - D. Permission from all passengers
- 8. During the proning process on a scissor lift, what should the ac and the controller do for safety?
 - A. Grip the inside shoulder strap of the flyers' flight suits
 - B. Grip the outside shoulder strap of the flyers' flight suits
 - C. Stand clear of the flyers
 - D. Only observe from a distance
- 9. If the right-side flyer pulls the ripcord and no result occurs, what should the flight crew do next?
 - A. Have the same flyer pull again
 - B. Check the ripcord mechanism
 - C. Have the other flyer try their ripcord
 - D. Call for assistance
- 10. When must the launch cable be refinished or replaced?
 - A. If three or more broken wires are found
 - B. Before operations if two broken wires are found
 - C. After every flight
 - D. Weekly during inspections

Answers

- 1. B 2. C 3. B 4. B 5. C 6. A 7. A 8. B 9. C 10. B

Explanations

1. What could happen if a flight were landed with the hydraulic landing unit setting too light?

- A. The rope could snap
- B. The rope could be pulled far beyond the low point
- C. The landing would be smoother
- D. The flight would be aborted

When a flight is landed with the hydraulic landing unit setting too light, it causes the rope to be pulled further than intended, which results in exceeding the low point of the rope's trajectory. This scenario can happen because the hydraulic settings dictate the amount of tension and control applied to the rope during landing. If the settings are not sufficient to manage the weight and dynamics of the flight adequately, it can lead to an unsafe landing situation where the rope is stretched or pulled excessively, potentially causing strain on the equipment and compromising safety. Managing the hydraulic landing unit correctly is crucial for executing a safe and controlled landing, and ensuring that the rope remains within safe operational limits is a key aspect of that process. Therefore, if the rope is pulled far beyond the low point, it indicates a failure to maintain proper control, which could lead to further complications or potential hazards during the landing.

2. What must be checked after a snap-back incident?

- A. The hydraulic landing unit alone
- B. The Perlon rope only
- C. The lander for a mis-spool
- D. The entire Skycoaster system

After a snap-back incident, it is essential to check the lander for a mis-spool. This is crucial because a snap-back can indicate that the cable mechanism or the tension system has experienced an unusual incident that may cause the lander to become misaligned or improperly spooled. Mis-spooling can lead to further issues, including safety hazards during subsequent operations. Inspecting just the lander ensures that any specific problems related to that component are addressed, especially in relation to how the system managed the sudden change in tension during a snap-back. A thorough analysis of the lander's condition will help maintain operational integrity and ensure the safety of future rides. While other components of the Skycoaster system may also need inspection following an incident, prioritizing the lander's condition after a snap-back is essential to prevent recurring issues and ensure a safe environment for riders.

3. What does the flight crew refer to as 'AC'?

- A. Assistant Coordinator
- **B.** Air Controller
- C. Aerial Command
- **D.** Aircraft Coordinator

The term 'AC' refers to 'Air Controller' within the context of the flight crew's operations. An Air Controller is responsible for overseeing various aspects of air traffic management during flight activities, particularly in environments where precision and safety are key factors, such as in the operation of a Skycoaster. This role is vital for ensuring that all necessary protocols are followed and that communications with the flight crew are clear and effective, enhancing safety and coordination during the flight experience. The responsibilities typically include monitoring flight paths and coordinating launches and landings to ensure safety for participants and staff alike. Understanding this role is crucial for anyone involved in skycoaster operations, as it integrates various elements of flight safety and crew management.

4. Which of the following should NOT be done if broken wires are discovered?

- A. Software updates to the systems
- B. Continuing operations as usual
- C. Immediate repair or replacement
- D. Conducting a follow-up inspection

Continuing operations as usual in the presence of broken wires is unsafe and poses serious risks to both the operators and the users of the Skycoaster. When broken wires are found, it is critical to halt all operations to prevent any accidents or malfunctions that could arise from compromised safety systems. This action ensures that no further damage occurs and that all necessary repairs can be performed without putting anyone at risk. Prioritizing immediate repair or replacement, conducting a follow-up inspection, and ensuring any software updates are necessary to maintain the integrity and safety of the operations. Therefore, the appropriate response to finding broken wires involves stopping operations immediately and addressing the issue to restore safety standards.

- 5. In a triple flight, where should the tallest flyer be arranged?
 - A. On the left
 - B. On the right
 - C. In the middle
 - D. At the back

In a triple flight scenario, arranging the tallest flyer in the middle is crucial for balance and stability during the flight. This positioning helps to distribute weight evenly across the structure, minimizing the risk of tilt or imbalance. When the tallest person is positioned centrally, their height is counteracted by the lower heights on either side, allowing for a more controlled and smoother experience as the Skycoaster operates. Additionally, the middle position helps ensure that the center of gravity is maintained, which is vital for safety and the overall performance of the Skycoaster. If the tallest flyer were placed on the left, right, or at the back, it could potentially lead to issues with the flight dynamics, such as increased sway or difficulty in a controlled descent. Thus, placing the tallest flyer in the middle is the most effective way to ensure a safe and enjoyable ride experience for all participants.

- 6. True or False: The AC is responsible for ensuring safety announcements are made before proceeding with operations.
 - A. True
 - **B.** False
 - C. Only during emergencies
 - D. Only if there is a malfunction

The statement is true because the AC (Area Coordinator) plays a crucial role in ensuring the safety of operations. Before any activities begin, it is essential for the AC to make safety announcements to inform and remind participants about necessary safety procedures and protocols. This helps create a safe environment and prepares individuals for the experience they are about to engage in, reducing the risk of accidents or misunderstandings. The importance of this responsibility is underscored by the fact that safety should always be prioritized, regardless of whether it is a normal operational procedure or an emergency situation. The AC's proactive measures in making announcements contribute significantly to the overall safety culture of the facility.

- 7. What is required to ensure safety before launching a flight?
 - A. Daily inspection of equipment
 - B. Three complete practice runs
 - C. A review of flight cards
 - D. Permission from all passengers

Conducting a daily inspection of equipment is crucial for ensuring safety before launching a flight on a Skycoaster. This inspection involves thoroughly checking all components of the ride, including harnesses, cables, winches, and any safety mechanisms in place. The daily checks ensure that any potential issues are identified and addressed before passengers use the equipment, thus preventing accidents or malfunctions during operation. While practice runs, reviewing flight cards, and obtaining permission from passengers are important safety measures, they do not directly contribute to the overall operational integrity and safety of the equipment itself. A comprehensive inspection is foundational in maintaining a secure environment for both passengers and operators. Therefore, prioritizing daily equipment inspections is essential in the overall safety protocol of the Skycoaster system.

- 8. During the proning process on a scissor lift, what should the ac and the controller do for safety?
 - A. Grip the inside shoulder strap of the flyers' flight suits
 - B. Grip the outside shoulder strap of the flyers' flight suits
 - C. Stand clear of the flyers
 - D. Only observe from a distance

In the context of the proning process on a scissor lift, gripping the outside shoulder strap of the flyers' flight suits is crucial for safety. This approach allows the AC (Assistant Controller) and the controller to maintain control and provide support to the flyers without compromising their balance or safety during the process. Gripping the outside strap ensures that the individuals being supported have the necessary assistance while also minimizing the risk of accidentally pulling or tugging too hard, which could disrupt the flyers' stability. It provides a secure grip that allows for better control during the transition phase, ensuring the flyers are safely positioned before any flight activity begins. While other options might suggest alternative forms of involvement, they either do not offer direct support or may place individuals too far from the necessary interaction with the flyers, which can diminish the safety protocols in place during this critical phase of the process.

9. If the right-side flyer pulls the ripcord and no result occurs, what should the flight crew do next?

- A. Have the same flyer pull again
- B. Check the ripcord mechanism
- C. Have the other flyer try their ripcord
- D. Call for assistance

In this scenario, when the right-side flyer pulls the ripcord and there is no response, having the other flyer try their ripcord is the most appropriate action. This step ensures that the issue is isolated to the specific side of the mechanism that has experienced the failure, allowing the crew to diagnose whether the problem lies with the initial flyer's ripcord or if it is a broader issue affecting the system. By allowing the other flyer to pull their ripcord, the flight crew can determine if both sides of the mechanism are functioning properly, which is crucial for maintaining safety protocols. If the other flyer's action activates the system, the flight crew can conclude that the issue lies solely with the first flyer's side, potentially guiding their next steps. This method promotes a systematic approach to troubleshooting and enhances the safety of both flyers and crew on the Skycoaster. The other options, while they might seem relevant, do not provide the same immediate clarity or efficient troubleshooting. Checking the ripcord mechanism could be time-consuming and may not provide immediate feedback regarding functionality. Asking the same flyer to pull again could lead to frustration and does not contribute to resolving the issue efficiently. Calling for assistance might be necessary if the situation persists after troubleshooting, but it does not resolve the

10. When must the launch cable be refinished or replaced?

- A. If three or more broken wires are found
- B. Before operations if two broken wires are found
- C. After every flight
- D. Weekly during inspections

The correct answer emphasizes the importance of ensuring the safety and functionality of the launch cable before operations begin. If two broken wires are found, it indicates significant wear or potential failure of the cable, which can compromise the safety of the entire Skycoaster operation. By requiring the cable to be refinished or replaced before any flights occur, it mitigates the risk of accidents that could arise from using a compromised cable. This proactive approach to maintenance is essential in maintaining the integrity and safety of the Skycoaster system. Other alternatives suggest different thresholds for maintenance or timing that may not align with safety protocols. For instance, identifying three or more broken wires as a threshold for action may be reactive rather than proactive. Operating with two broken wires already presents a safety concern, making it critical to address before further use. Regular weekly inspections or after every flight do not adequately capture the immediate need for maintenance after discovering broken wires, as it may be too late to ensure safety during actual operations.