

SIFT Army Aviation Information Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What does the angle of attack (AOA) measure in a rotor blade?**
 - A. The angle between the mean camber line and the direction of motion relative to the air.**
 - B. The angle between the chord line and the direction of motion relative to the air.**
 - C. The angle between the mean camber line and the longitudinal airflow.**
 - D. The angle between the chord line and the longitudinal airflow.**
- 2. What type of drag is primarily associated with the shape and surface of an aircraft?**
 - A. Induced drag**
 - B. Profile drag**
 - C. Form drag**
 - D. Parasite drag**
- 3. A helicopter pilot descends to intercept a runway safely. What factor is crucial prior to descent?**
 - A. Maintaining a balanced load**
 - B. Monitoring external ambient conditions**
 - C. Adjusting for wind speed**
 - D. Checking RPM levels**
- 4. What type of wheels do some helicopters have?**
 - A. All types, retractable to reduce drag**
 - B. Some types, supplementary to skids**
 - C. Some types, retractable**
 - D. All types, supplementary to skids**
- 5. Helicopter turbine engines produce _____ thrust per pound compared to piston engines:**
 - A. less**
 - B. the same**
 - C. more**
 - D. the same, but only after factoring the effect of density altitude**

6. What advantage do practice exams provide before taking the SIFT?

- A. Reduction of test anxiety**
- B. Familiarity with the test format and types of questions**
- C. Access to test answers**
- D. Connection with other candidates**

7. What is the load factor of a helicopter experiencing an effective load of 4000 pounds if its weight is 2000 pounds?

- A. 1**
- B. 2**
- C. 3**
- D. 4**

8. What happens when there is too much lift generated by the main rotor blades?

- A. Torque on the retreating blades.**
- B. The blades twist.**
- C. The blades flap.**
- D. Vortices are created in the driven region.**

9. If the helicopter's nose drops while flying and the cyclic is neutral, what is likely causing this?

- A. Trim is improperly set**
- B. The helicopter is too heavy**
- C. Fuel in the rear is being used up**
- D. Airspeed is too low**

10. How does geometry aid in the design of aircraft?

- A. By facilitating passenger comfort**
- B. By enabling weight distribution calculations**
- C. By determining design aesthetics**
- D. By improving fuel burn efficiency**

Answers

SAMPLE

1. B
2. C
3. A
4. C
5. C
6. B
7. B
8. C
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. What does the angle of attack (AOA) measure in a rotor blade?

- A. The angle between the mean camber line and the direction of motion relative to the air.
- B. The angle between the chord line and the direction of motion relative to the air.**
- C. The angle between the mean camber line and the longitudinal airflow.
- D. The angle between the chord line and the longitudinal airflow.

The angle of attack (AOA) in the context of a rotor blade is defined as the angle between the chord line of the blade and the direction of motion relative to the air. This measurement is crucial because it affects the lift generated by the rotor blades. When the angle of attack increases, the lift increases up to a certain point known as the critical angle of attack, beyond which lift will begin to decrease due to flow separation and potential stall conditions. Understanding AOA is essential for pilots and aviation personnel as it directly influences the performance characteristics of the rotorcraft. Correctly managing AOA helps in optimizing performance during various phases of flight, including takeoff, hovering, and maneuvers. This emphasizes the importance of maintaining an appropriate angle to ensure controlled and efficient flight operations. In contrast, while the mean camber line plays a role in airfoil design and performance, it does not define the angle of attack in this context. Thus, focusing solely on the chord line and its relationship to airflow gives a clear and direct understanding of what AOA indicates for rotor blades.

2. What type of drag is primarily associated with the shape and surface of an aircraft?

- A. Induced drag
- B. Profile drag
- C. Form drag**
- D. Parasite drag

The correct choice is based on the understanding of how an aircraft's shape influences the resistance it faces as it moves through the air. Form drag, also known as shape drag, is the drag that arises primarily due to the geometric shape of the aircraft. It is influenced by the frontal area and the airflow separation that occurs around the aircraft's body. When an aircraft presents a certain shape to the airflow, it affects how smoothly air can move around it. If the aircraft has a shape that generates greater disturbances in the airflow, this leads to increased form drag. For example, a streamlined aircraft with a smooth, aerodynamic design will encounter less form drag compared to a shape with sharp edges or irregularities. Understanding that form drag is fundamentally linked to the physical characteristics and dimensions of the aircraft helps in recognizing its significance in overall drag management, which is crucial for enhancing flight efficiency. While other types of drag such as induced drag are related to the lift generation process and parasite drag encompasses various other resistance factors including profile and skin friction drag, none are as directly related to the shape and surface of the aircraft as form drag.

3. A helicopter pilot descends to intercept a runway safely. What factor is crucial prior to descent?

- A. Maintaining a balanced load**
- B. Monitoring external ambient conditions**
- C. Adjusting for wind speed**
- D. Checking RPM levels**

The most crucial factor prior to descending to intercept a runway safely is maintaining a balanced load. A balanced load is essential for ensuring that the helicopter handles predictably and remains stable during flight maneuvers, especially during descent. When the weight is evenly distributed, it aids in controlling the helicopter's pitch, roll, and yaw movements, which is especially important as the pilot approaches the runway. An unbalanced load can lead to difficulties in controlling the helicopter, increasing the risk of an unstable approach and landing. While other factors such as monitoring external ambient conditions and adjusting for wind speed are important, they are secondary when it comes to maintaining stability and control during the critical phase of descent. Checking RPM levels is also relevant to ensure the engine is operating efficiently, but without a balanced load, those RPM levels may not be sufficient to maintain safe flight dynamics. Balancing the load directly affects the helicopter's response to pilot inputs, making it a fundamental aspect of safe descent procedures.

4. What type of wheels do some helicopters have?

- A. All types, retractable to reduce drag**
- B. Some types, supplementary to skids**
- C. Some types, retractable**
- D. All types, supplementary to skids**

Certain helicopter models are equipped with retractable wheels, which serve to optimize the aircraft's aerodynamics during flight. These wheels can be extended for landing or taxiing, providing a stable base, and then retracted into the fuselage once airborne to minimize drag. This design choice enhances overall flight performance by reducing air resistance, making it a valuable feature in more advanced helicopter systems. The presence of retractable wheels is not universal across all helicopter types, which is why the other options may imply features not shared by all models. Some helicopters utilize supplementary skids rather than wheels, and while retractable wheels improve aerodynamics, they are not featured on every rotorcraft, which further delineates the uniqueness of aircraft designs in the helicopter category.

5. Helicopter turbine engines produce _____ thrust per pound compared to piston engines:

- A. less**
- B. the same**
- C. more**
- D. the same, but only after factoring the effect of density altitude**

Helicopter turbine engines are designed to produce more thrust per pound when compared to piston engines. This difference arises primarily from the operational principles and efficiencies of the two types of engines. Turbine engines operate based on the principle of jet propulsion, where a significant amount of air is compressed and then mixed with fuel to produce high-speed exhaust gases that generate thrust. This allows turbine engines to be lighter and more powerful, capable of producing a greater thrust-to-weight ratio than piston engines. Piston engines, on the other hand, rely on the reciprocating motion of pistons to generate power, which tends to be less efficient in terms of thrust production relative to the total weight of the engine. As a result, while both engine types can be effective in various applications, turbine engines, particularly in helicopter aviation, demonstrate superior performance by yielding more thrust per pound of engine weight. This quality is essential for helicopters, which often require significant lifting power and agility in flight.

6. What advantage do practice exams provide before taking the SIFT?

- A. Reduction of test anxiety**
- B. Familiarity with the test format and types of questions**
- C. Access to test answers**
- D. Connection with other candidates**

Practice exams before taking the SIFT offer significant benefits, particularly regarding familiarity with the test format and types of questions. Engaging in practice tests helps candidates understand the structure of the exam, including the types of questions they will encounter, the timing of sections, and the overall flow of the assessment. This kind of preparation allows candidates to approach the actual test with greater confidence and a clearer strategy for managing their time and answering questions effectively. While other options mention valuable aspects such as reducing test anxiety or connecting with other candidates, the fundamental value of practice exams lies in providing a hands-on experience that simulates the test environment. By encountering similar question styles and formats, candidates can hone their skills, improve their response strategies, and thus feel more prepared on test day.

7. What is the load factor of a helicopter experiencing an effective load of 4000 pounds if its weight is 2000 pounds?

- A. 1**
- B. 2**
- C. 3**
- D. 4**

To determine the load factor of a helicopter, you need to understand the relationship between the effective load and the weight of the helicopter. The load factor is calculated by taking the effective load and dividing it by the weight of the helicopter. In this scenario, the effective load is 4000 pounds, and the helicopter's weight is 2000 pounds. By dividing the effective load (4000 pounds) by the weight (2000 pounds), you can calculate the load factor: Load Factor = Effective Load / Weight Load Factor = $4000 \text{ pounds} / 2000 \text{ pounds}$ Load Factor = 2 This means that the helicopter is experiencing a load that is twice its own weight, indicating that it is operating under conditions that result in a load factor of 2. Load factors are important in aviation as they affect the structure's stress and the performance of the aircraft. When a helicopter experiences a load factor greater than 1, it is encountering additional forces acting on it, typically during maneuvers such as turns or when climbing or descending rapidly.

8. What happens when there is too much lift generated by the main rotor blades?

- A. Torque on the retreating blades.**
- B. The blades twist.**
- C. The blades flap.**
- D. Vortices are created in the driven region.**

When excess lift is generated by the main rotor blades, the phenomenon known as "blade flapping" occurs. This occurs because as the lift on the blades increases beyond a certain point, the rotor blades must accommodate the change in aerodynamic forces acting on them. As the rotor blades generate more lift, the increased upward force causes them to flap upward. This is a natural response designed to maintain balance and manage the stresses acting on the rotor system. Flapping helps to equalize the lift distribution across the rotor system, preventing any one blade from encountering excessively high loads that could lead to structural failure. In rotary-wing aircraft, this mechanism is critical for maintaining stable flight, especially in varying load conditions or during flight maneuvers where lift demands change rapidly. The ability of the blades to flap allows for adjustments in their angle of attack, promoting a more uniform lift across the rotor disk.

9. If the helicopter's nose drops while flying and the cyclic is neutral, what is likely causing this?

- A. Trim is improperly set**
- B. The helicopter is too heavy**
- C. Fuel in the rear is being used up**
- D. Airspeed is too low**

The situation described involves the helicopter's nose dropping while the cyclic control is neutral. This indicates that there may be an imbalance in the helicopter's center of gravity or load distribution. When fuel is burned from the rear tanks, the helicopter's center of gravity shifts forward. If the cyclic is not adjusted to maintain proper pitch attitude, this can result in the nose of the helicopter dropping. As fuel is consumed from the rear, it decreases the overall weight at that end, leading to a shift that can cause the nose to lower unless corrective action is taken through the cyclic. This phenomenon underscores the importance of managing fuel loads and being aware of how changes in fuel can affect the helicopter's balance and performance. Other factors like improper trim settings, excess weight, or low airspeed might influence flying characteristics, but in this scenario, the specific action of burning fuel from the rear clearly illustrates a direct cause for the nose dropping.

10. How does geometry aid in the design of aircraft?

- A. By facilitating passenger comfort**
- B. By enabling weight distribution calculations**
- C. By determining design aesthetics**
- D. By improving fuel burn efficiency**

The role of geometry in the design of aircraft is fundamentally linked to enabling precise weight distribution calculations. In aviation, understanding how weight is distributed throughout the aircraft is crucial for maintaining stability, control, and performance. Geometry allows engineers to create accurate models of the aircraft's structure, ensuring that components are positioned in a way that evenly balances the aircraft's weight. When designing an aircraft, geometry helps analyze the various forces acting on it, such as lift, drag, and gravitational forces. By utilizing geometric principles, engineers can predict how changes in the design will affect these forces and make informed decisions regarding the placement of engines, fuel tanks, and cargo. This is essential not only for the safety of the aircraft but also for its efficiency, as an optimally balanced aircraft will perform better and consume less fuel. Additionally, understanding the geometric relationships within the aircraft allows for better integration of systems and components, ensuring that everything fits well within the overall design without compromising performance or safety. Therefore, geometry is critical in achieving the right weight distribution, crucial for the aircraft's operation.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://sift-armyaviation.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE