

SDSU Chemistry Placement Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

1. What is the formula for calculating the number of moles from mass and molar mass?

- A. Moles = Mass x Molar Mass**
- B. Moles = Mass / Molar Mass**
- C. Moles = Molar Mass / Mass**
- D. Moles = Mass + Molar Mass**

2. What is the value of the gas constant R in the ideal gas law?

- A. 0.0821 L·atm/K·mol**
- B. 8.3145 L·kPa/K·mol**
- C. 1.987 cal/K·mol**
- D. 22.414 L/mol**

3. What is the common name for sulfuric acid, a widely used chemical?

- A. Vinegar**
- B. Battery acid**
- C. Hydrochloric acid**
- D. Acetic acid**

4. What indicates an increase in concentration of a solution?

- A. A decrease in the volume of solvent or an increase in the amount of solute added**
- B. An increase in the volume of solvent**
- C. An increase in temperature**
- D. A decrease in temperature**

5. Which of the following is the strongest acid?

- A. HCl**
- B. H₂SO₄**
- C. HNO₃**
- D. CH₃COOH**

6. What defines a combination reaction?

- A. A reaction where two reactants produce one product**
- B. A reaction breaking down one compound into two products**
- C. A reaction with two compounds and their elements switching**
- D. A reaction producing gas as a product**

7. What does the term 'solubility' refer to?

- A. The ability of a solute to form a solid**
- B. The maximum amount of a solute that can dissolve in a given amount of solvent**
- C. The rate at which a solute dissolves in solvent**
- D. The concentration of solute in a saturated solution**

8. What is the main purpose of conducting a titration?

- A. To mix two solutions**
- B. To determine the concentration of an unknown solution**
- C. To observe color changes in a chemical reaction**
- D. To create a buffer solution**

9. What is the term for substances that speed up chemical reactions without undergoing permanent changes themselves?

- A. Reactants**
- B. Inhibitors**
- C. Catalysts**
- D. Solvents**

10. What is the bond angle in a tetrahedral molecule?

- A. 120 degrees**
- B. 109.5 degrees**
- C. 90 degrees**
- D. 180 degrees**

Answers

SAMPLE

1. B
2. B
3. B
4. A
5. B
6. A
7. B
8. B
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. What is the formula for calculating the number of moles from mass and molar mass?

- A. Moles = Mass x Molar Mass**
- B. Moles = Mass / Molar Mass**
- C. Moles = Molar Mass / Mass**
- D. Moles = Mass + Molar Mass**

The correct formula for calculating the number of moles from mass and molar mass is found by rearranging the fundamental relationship between mass, moles, and molar mass. The concept is rooted in the definition of moles, where one mole of a substance is the amount that contains Avogadro's number of entities (atoms, molecules, etc.) and it corresponds to a specific mass related to its molar mass. To find the number of moles, you divide the mass of the substance by its molar mass. Molar mass is expressed in grams per mole (g/mol), so when you take the total mass (in grams) and divide it by the molar mass, you get the number of moles. This formula effectively captures the ratio between the mass of the substance you have and the mass of one mole of that substance. This concept reflects the relationship that as you have more mass, you increase the number of moles, provided the molar mass remains constant. Therefore, using mass divided by molar mass gives you the correct calculation for the number of moles. The reasoning behind the other provided options does not align with this established relationship in chemistry.

2. What is the value of the gas constant R in the ideal gas law?

- A. 0.0821 L·atm/K·mol**
- B. 8.3145 L·kPa/K·mol**
- C. 1.987 cal/K·mol**
- D. 22.414 L/mol**

The correct value of the gas constant (R) in the ideal gas law is indeed accurately represented in multiple forms depending on the units used. In this case, the value of (R) in units of liters, kilopascals, per kelvin, and per mole is appropriately stated as 8.3145 ($\text{L}\cdot\text{kPa}/\text{K}\cdot\text{mol}$). The ideal gas law, described by the equation ($PV = nRT$), uses the gas constant (R) to relate the pressure (P), volume (V), number of moles (n), and temperature (T) of an ideal gas. Different applications and measurements might use varying units for pressure and volume; thus, (R) is expressed in other units too, but it will always represent the same fundamental constant in thermodynamics. In terms of units, the option presented in this case indicates that pressure is measured in kilopascals, a common unit in many scientific contexts, especially in relation to the metric system. When performing calculations involving gases at varying pressures, this version of the gas constant is particularly useful. The other choices provide different values or units for (R). For example, 0.0821 ($\text{L}\cdot\text{atm}/\text{K}\cdot\text{mol}$)

3. What is the common name for sulfuric acid, a widely used chemical?

- A. Vinegar**
- B. Battery acid**
- C. Hydrochloric acid**
- D. Acetic acid**

The common name for sulfuric acid is recognized as battery acid. This designation comes from its prevalent use in lead-acid batteries, which are commonly found in automobiles and other vehicles. Sulfuric acid serves as the electrolyte in these batteries, facilitating the necessary chemical reactions that produce electrical energy. Understanding the context of sulfuric acid's applications helps establish why "battery acid" is the correct choice. It highlights the practicality and industrial significance of sulfuric acid, particularly in energy storage and automotive industries. Other options, such as vinegar and acetic acid, pertain to entirely different substances and uses. Hydrochloric acid, while also an important chemical, is not synonymous with sulfuric acid and is employed primarily in industrial applications for cleaning and metallurgical processes.

4. What indicates an increase in concentration of a solution?

- A. A decrease in the volume of solvent or an increase in the amount of solute added**
- B. An increase in the volume of solvent**
- C. An increase in temperature**
- D. A decrease in temperature**

An increase in the concentration of a solution is indicated by either a decrease in the volume of solvent or an increase in the amount of solute added. When the volume of solvent is decreased while keeping the amount of solute constant, the same amount of solute is now present in a smaller volume, leading to a higher concentration. Similarly, if the amount of solute is increased while the volume of solvent remains the same, there is a greater quantity of solute present relative to the volume of solvent, resulting in a higher concentration. In contrast, an increase in the volume of solvent would dilute the solution, leading to a lower concentration. Changes in temperature can affect solubility and reaction rates, but they do not directly indicate a concentration increase without additional context regarding the behavior of solute and solvent.

5. Which of the following is the strongest acid?

- A. HCl
- B. H₂SO₄**
- C. HNO₃
- D. CH₃COOH

In the context of acids, strength is determined by the extent to which an acid donates protons (H⁺ ions) in a solution. Sulfuric acid (H₂SO₄) is considered the strongest acid among the options listed due to its ability to fully dissociate into its ions in aqueous solution. When H₂SO₄ dissociates, it produces two protons (H⁺) for every molecule of acid, making it a diprotic acid. The first dissociation step is strong and essentially complete, while the second dissociation, although weaker, still contributes to the overall acidity. This results in a higher concentration of available H⁺ ions compared to the other acids listed. Hydrochloric acid (HCl) is a strong acid as well, but it only generates one proton per molecule. Nitric acid (HNO₃) is also a strong acid, fully dissociating into H⁺ and NO₃⁻ ions, but it still does not match the overall proton donation capacity of H₂SO₄. Acetic acid (CH₃COOH) is a weak acid, only partially dissociating in solution, which significantly reduces its acidity compared to strong acids. Thus, due

6. What defines a combination reaction?

- A. A reaction where two reactants produce one product**
- B. A reaction breaking down one compound into two products
- C. A reaction with two compounds and their elements switching
- D. A reaction producing gas as a product

A combination reaction is defined by the process in which two or more reactants combine to form a single product. This clearly aligns with the concept of a combination reaction—where the focus is on the merging of reactants, leading to a single, more complex product. For instance, if we take two elements like hydrogen and oxygen, they can combine to form water, illustrating this type of reaction. In these reactions, the overall complexity of the reactants is reduced to form a simpler structure, which is characteristic of combination reactions. The other options describe different types of reactions: the second reflects a decomposition reaction, which involves breaking down a compound into simpler substances; the third describes a double displacement reaction, where ionic compounds exchange partners; and the fourth refers to reactions that produce gases, which may occur in various reaction types, not exclusively combination reactions. Therefore, the defining characteristic of a combination reaction is appropriately captured in the first option.

7. What does the term 'solubility' refer to?

- A. The ability of a solute to form a solid
- B. The maximum amount of a solute that can dissolve in a given amount of solvent**
- C. The rate at which a solute dissolves in solvent
- D. The concentration of solute in a saturated solution

The term 'solubility' specifically refers to the maximum amount of a solute that can dissolve in a given amount of solvent at a specified temperature and pressure. This definition highlights that solubility is not just about whether a solute will dissolve, but rather how much of it can be dissolved before reaching a saturation point. This concept is crucial because different solutes have different solubility limits in various solvents. For instance, sodium chloride has a certain solubility in water, meaning there is a specific limit to how much of it can dissolve in water at a given temperature before any additional solute will remain undissolved. Understanding solubility is essential for predicting how substances interact in solutions, which is a critical aspect of chemistry, especially in areas like solution chemistry and reactions in aqueous environments. The other concepts mentioned—such as the formation of a solid, the rate of dissolution, or the concentration in a saturated solution—do not accurately encapsulate the definition of solubility itself. Instead, they relate to different aspects of solution behavior.

8. What is the main purpose of conducting a titration?

- A. To mix two solutions
- B. To determine the concentration of an unknown solution**
- C. To observe color changes in a chemical reaction
- D. To create a buffer solution

The primary purpose of conducting a titration is to determine the concentration of an unknown solution. This analytical technique involves the gradual addition of a reagent (titrant) to a solution of unknown concentration until the reaction reaches its endpoint, which is often indicated by a color change or pH shift. By measuring the volume of titrant used, and knowing its concentration and the stoichiometry of the reaction, one can calculate the concentration of the unknown solution with precision. This method is widely used in various fields, including chemistry, biology, environmental science, and pharmacology, making it a critical technique for quantitative analysis. While mixing solutions can occur during titration, that is not its main purpose. Observing color changes may happen during the titration as an indicator signals the endpoint, but it serves merely as an observation rather than the goal of the process. Creating a buffer solution is a separate procedure that may involve titration but is not the primary objective of performing a titration.

9. What is the term for substances that speed up chemical reactions without undergoing permanent changes themselves?

- A. Reactants**
- B. Inhibitors**
- C. Catalysts**
- D. Solvents**

The correct term for substances that speed up chemical reactions without undergoing permanent changes themselves is catalysts. Catalysts work by providing an alternative pathway for the reaction to occur, which lowers the activation energy required for the reaction to take place. This enables the reactants to convert into products more quickly than they would without the presence of the catalyst. During the reaction, the catalyst may temporarily interact with the reactants, but it is regenerated at the end of the reaction and remains unchanged in terms of its chemical composition and quantity. This ability to facilitate reactions repeatedly makes catalysts essential in many industrial and biological processes. Other options describe different concepts within chemistry. Reactants are the starting materials in a chemical reaction that undergo transformation. Inhibitors are substances that slow down or prevent chemical reactions, countering the effects of catalysts. Solvents are mediums in which reactions occur, often dissolving reactants, but they do not necessarily influence the speed of the reaction in the same way catalysts do. Understanding the role of catalysts highlights their importance in both synthetic processes and natural biochemical pathways.

10. What is the bond angle in a tetrahedral molecule?

- A. 120 degrees**
- B. 109.5 degrees**
- C. 90 degrees**
- D. 180 degrees**

In a tetrahedral molecule, the bond angle is 109.5 degrees due to the spatial arrangement of four electron pairs around a central atom. This arrangement minimizes the repulsion between the electron pairs according to VSEPR (Valence Shell Electron Pair Repulsion) theory, which states that electron pairs will arrange themselves to be as far apart as possible to minimize repulsion. In a tetrahedral geometry, the central atom is typically covalently bonded to four other atoms at the corners of a tetrahedron. Each bond creates a situation where the angles between them involve significant three-dimensional considerations to achieve the most stable configuration. The resulting angle of 109.5 degrees reflects this balance of forces acting on the electron pairs in three-dimensional space, optimizing the shape to reduce electron repulsion. Other bond angles listed in the options correspond to different molecular geometries. For instance, 120 degrees is characteristic of trigonal planar structures, 90 degrees is associated with octahedral or square planar geometries, and 180 degrees pertains to linear arrangements. These angles demonstrate how molecular shape can lead to different spatial configurations and bonding requirements based on the arrangement of atoms and electron pairs.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://sdsuchemplacement.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE