

Science Olympiad Designer Genes Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Where does the process of transcription primarily take place?**
 - A. Mitochondria**
 - B. Nucleus**
 - C. Cytoplasm**
 - D. Ribosome**

- 2. In a Dihybrid Cross, how many possible P. Square boxes are there?**
 - A. 4**
 - B. 8**
 - C. 12**
 - D. 16**

- 3. What is the primary structure of DNA?**
 - A. Single strand**
 - B. Double helix**
 - C. Triple helix**
 - D. Linear chain**

- 4. What key information can phylogenetics provide to researchers?**
 - A. Detailed structures of genes**
 - B. Evolutionary history and relationships among species**
 - C. Exact functions of all gene products**
 - D. Predictions regarding species extinction**

- 5. What term refers to the genetic makeup of an organism?**
 - A. Phenotype**
 - B. Genotype**
 - C. Polymer**
 - D. Heterozygous**

6. If you have a purine on one side of the DNA strand, what will be present on the opposite side?

- A. Pyrimidine**
- B. Protein**
- C. Amino acid**
- D. Carbohydrate**

7. What is the primary factor that determines an organism's phenotype?

- A. Genetic mutations**
- B. Genotype**
- C. Environmental conditions**
- D. Allelic variations**

8. What is Mendel's first law about?

- A. Gametes combine randomly in forming offspring**
- B. Traits are inherited only from one parent**
- C. Different alleles will always breed true**
- D. Genes are dominant over all traits**

9. What are the three stop codons in genetic translation?

- A. AUG, GUA, AUA**
- B. UAA, UAG, UGA**
- C. CAG, UCG, ACG**
- D. UAC, UCA, UGG**

10. What does Messenger RNA (mRNA) do?

- A. Transports amino acids**
- B. Carries the genetic code from nucleus to cytoplasm**
- C. Forms the ribosome structure**
- D. Regulates gene expression**

Answers

SAMPLE

1. B
2. D
3. B
4. B
5. B
6. A
7. B
8. A
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. Where does the process of transcription primarily take place?

- A. Mitochondria**
- B. Nucleus**
- C. Cytoplasm**
- D. Ribosome**

Transcription is the process by which the genetic information encoded in DNA is converted into messenger RNA (mRNA). This crucial step of gene expression primarily occurs in the nucleus of eukaryotic cells. During transcription, enzymes called RNA polymerases bind to specific regions of the DNA and synthesize a complementary RNA strand. The nucleus serves as a protective environment where the DNA is safely housed, allowing for the complex processes of transcription, including the necessary post-transcriptional modifications like capping, polyadenylation, and splicing before the mRNA is transported to the cytoplasm. In contrast, while mitochondria are involved in energy production and can also contain their own DNA, they do not serve as the primary site for transcription of nuclear genes. The cytoplasm is mainly where translation occurs, where ribosomes synthesize proteins based on the mRNA template. Ribosomes themselves are the sites of protein synthesis, not of mRNA synthesis. Thus, the correct answer is the nucleus, as it is the location where transcription takes place in eukaryotic cells.

2. In a Dihybrid Cross, how many possible P. Square boxes are there?

- A. 4**
- B. 8**
- C. 12**
- D. 16**

In a dihybrid cross, two traits that are controlled by different genes are examined simultaneously. Each trait typically has two alleles, which results in four possible combinations of alleles for each parent. When two individuals are crossed, the gametes produced by each parent carry these combinations of alleles. To visualize all potential gene combinations, a Punnett square is used. For a typical dihybrid cross, each parent can produce four types of gametes, which are combinations of alleles from the two traits. When these gametes are arranged in a Punnett square, the number of boxes is determined by multiplying the number of gamete types from one parent by the number of gamete types from the other parent. Since each parent can produce 4 different gametes (one for each combination of the two alleles for the two traits), the total number of combinations in the Punnett square is: $4 \text{ (from one parent)} \times 4 \text{ (from the other parent)} = 16 \text{ boxes}$. Thus, when performing a dihybrid cross, a Punnett square would effectively display 16 possible outcomes, each corresponding to a combination of alleles from the parents. This thorough grid not only helps predict the genotypic ratios but also the

3. What is the primary structure of DNA?

- A. Single strand
- B. Double helix**
- C. Triple helix
- D. Linear chain

The primary structure of DNA is best described as a double helix. This structure consists of two long strands of nucleotides that twist around each other, forming a shape reminiscent of a spiral staircase. Each strand is composed of a sugar-phosphate backbone with nitrogenous bases sticking out from it, where the bases on one strand pair specifically with complementary bases on the other strand (adenine with thymine and cytosine with guanine). The double helix configuration not only provides stability to the DNA molecule but also facilitates the processes of replication and transcription. The specific pairing of the bases is crucial for the accurate transmission of genetic information, highlighting the importance of this structure in genetics and molecular biology. In contrast, a single strand would not provide the same level of stability or functionality, a triple helix is a much rarer and less stable form of nucleic acid, and a linear chain does not account for the significant structural organization observed in double-stranded DNA. The double helix is essential for compatibility with biological processes and the overall genetics framework within living organisms.

4. What key information can phylogenetics provide to researchers?

- A. Detailed structures of genes
- B. Evolutionary history and relationships among species**
- C. Exact functions of all gene products
- D. Predictions regarding species extinction

Phylogenetics is a branch of biology that focuses on understanding the evolutionary relationships among various species. It utilizes data from genetic, morphological, and biochemical characteristics to construct evolutionary trees or phylogenies, which depict how species have diverged from common ancestors over time. This approach helps researchers trace the lineage of organisms and provides insights into the processes of evolution, speciation, and adaptation. The information derived from phylogenetics can reveal patterns of descent, identify shared characteristics, and often provide a timeline indicating when specific evolutionary changes occurred. This offers a foundational framework for further research in evolutionary biology, conservation efforts, and understanding the biodiversity of life on Earth. While other options mention important concepts in genetics and biology, they do not specifically pertain to the unique contributions of phylogenetic analysis. For instance, the detailed structures of genes and the exact functions of gene products are more closely related to molecular genetics rather than evolutionary relationships. Predictions regarding species extinction primarily hinge on ecological studies, risk assessments, and environmental factors rather than directly on phylogenetic data. Thus, the strongest emphasis of phylogenetics lies in elucidating the evolutionary history and relationships among species.

5. What term refers to the genetic makeup of an organism?

- A. Phenotype**
- B. Genotype**
- C. Polymer**
- D. Heterozygous**

The term that refers to the genetic makeup of an organism is "genotype." The genotype encompasses the specific set of genes inherited from an organism's parents, representing the genetic blueprint that influences physical traits, behaviors, and susceptibilities to certain health conditions. While phenotype refers to the observable characteristics or traits of an organism, such as color, size, and shape, it is influenced by the genotype and environmental factors. Polymer is a broad term that applies to large molecules composed of repeating subunits, often not directly related to genetics. Heterozygous describes a specific genetic condition where an individual has two different alleles for a particular gene, which pertains to the genotype but does not define the term itself. Hence, the correct answer, genotype, accurately describes the overall genetic composition.

6. If you have a purine on one side of the DNA strand, what will be present on the opposite side?

- A. Pyrimidine**
- B. Protein**
- C. Amino acid**
- D. Carbohydrate**

In DNA, the structure is characterized by the pairing of nucleobases that are classified into two categories: purines and pyrimidines. Purines, which include adenine (A) and guanine (G), are always paired with pyrimidines, which include cytosine (C) and thymine (T) in DNA. This specific pairing is due to the hydrogen bonding patterns that allow for stable base pairing, with purines forming two hydrogen bonds with pyrimidines (A with T) and three hydrogen bonds in the case of G with C. This complementary base pairing is essential for the double-helix structure of DNA, maintaining uniform width and allowing for accurate replication and transcription processes. When a purine is present on one side of the DNA strand, the opposite side will necessarily have a pyrimidine to maintain this specific pairing. Other given choices, such as protein, amino acid, or carbohydrate, are not relevant in this context as they do not participate directly in the base pairing of DNA. Hence, the presence of a purine on one side of the DNA strand guarantees the presence of a pyrimidine on the opposite side.

7. What is the primary factor that determines an organism's phenotype?

- A. Genetic mutations**
- B. Genotype**
- C. Environmental conditions**
- D. Allelic variations**

The primary factor that determines an organism's phenotype is the genotype. The genotype refers to the specific genetic makeup of an organism, encompassing all of its alleles, which ultimately dictate how traits are expressed. Essentially, the genotype serves as the blueprint for the organism, guiding the development of physical characteristics (phenotype) such as color, size, and shape. Although environmental conditions can influence the expression of certain traits, meaning that the phenotype can vary based on different environments, the underlying genetic code set forth by the genotype is fundamentally what dictates those traits. Genetic mutations and allelic variations can indeed contribute to differences in phenotype, but they are components of the genotype itself. Thus, the genotype is the most comprehensive factor in determining an organism's observable characteristics.

8. What is Mendel's first law about?

- A. Gametes combine randomly in forming offspring**
- B. Traits are inherited only from one parent**
- C. Different alleles will always breed true**
- D. Genes are dominant over all traits**

Mendel's first law, known as the Law of Segregation, refers specifically to how alleles segregate during the formation of gametes. According to this law, each organism carries two alleles for each trait, one inherited from each parent. During gamete formation (e.g., through meiosis), these alleles segregate so that each gamete carries only one allele for each trait. This means that the combinations of alleles in offspring are the result of the random fusion of gametes from two parents. The idea that gametes combine randomly in forming offspring highlights the randomness of genetic assortment and the importance of probability in inheritance patterns. This foundational concept in genetics explains how traits can be inherited in different combinations, laying the groundwork for understanding genetic variation. Other options do not accurately represent Mendel's first law. The notion that traits are inherited only from one parent is misleading since both parents contribute to the genetic make-up of the offspring. The statement about different alleles always breeding true misrepresents the concept of dominant and recessive traits. Lastly, the claim that genes are dominant over all traits is incorrect, as dominance varies among alleles and is not a universal principle applied in every case.

9. What are the three stop codons in genetic translation?

- A. AUG, GUA, AUA
- B. UAA, UAG, UGA**
- C. CAG, UCG, ACG
- D. UAC, UCA, UGG

The three stop codons in genetic translation are UAA, UAG, and UGA. These codons signal the termination of protein synthesis during translation, meaning that when the ribosome encounters one of these codons on the mRNA, it recognizes that it should stop adding amino acids to the growing polypeptide chain and release the completed protein. Each stop codon plays a crucial role in ensuring that proteins are synthesized correctly, as they indicate that the reading frame has reached its end, preventing the addition of incorrect or unnecessary amino acids. The presence of multiple stop codons provides a level of redundancy, which enhances the reliability of the translation process. In contrast, the other options contain codons that either represent start codons or code for specific amino acids, but do not function as stop signals in the translation process. Understanding the significance of the stop codons is important for grasping how genetic information is expressed within cells.

10. What does Messenger RNA (mRNA) do?

- A. Transports amino acids
- B. Carries the genetic code from nucleus to cytoplasm**
- C. Forms the ribosome structure
- D. Regulates gene expression

Messenger RNA (mRNA) plays a crucial role in the process of gene expression by carrying the genetic code from the nucleus to the cytoplasm. When a gene is expressed, the DNA sequence is transcribed into mRNA in the nucleus. This mRNA strand then travels out of the nucleus and into the cytoplasm, where it serves as a template for protein synthesis during translation. In the cytoplasm, ribosomes read the sequence of the mRNA and translate it into a specific sequence of amino acids, ultimately forming a protein. Thus, mRNA is essential for conveying the genetic information necessary for the synthesis of proteins, which are vital for numerous cellular functions. Other options serve different functions in the cell; for example, amino acids are transported by transfer RNA (tRNA), ribosomes themselves are made up of ribosomal RNA (rRNA) and proteins, and gene expression regulation is typically managed by several factors, including regulatory proteins and other RNA molecules.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://sciolymiaddesignergenes.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE