
Salesforce JavaScript
Developer I Certification
Practice Exam (Sample)
Study Guide

Everything you need from our exam experts!

Sample study guide. For the full version with hundreds of questions, visit:
https://salesforcejsdev1.examzify.com

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any
means, graphic, electronic, or mechanical, including photocopying,
recording, web distribution, taping, or by any information storage retrieval
system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate,
complete, and timely information about this product from reliable sources.

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 1

SA
M

PLE

Table of Contents
Copyright 1...
Table of Contents 2..
Introduction 3..
How to Use This Guide 4..
Questions 5...
Answers 8...
Explanations 10..
Next Steps 16...

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 2

SA
M

PLE

IntroductionIntroduction
Preparing for a certification exam can feel overwhelming, but with the
right tools, it becomes an opportunity to build confidence, sharpen your
skills, and move one step closer to your goals. At Examzify, we believe
that effective exam preparation isn’t just about memorization, it’s about
understanding the material, identifying knowledge gaps, and building
the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you’re preparing for a licensing exam, professional
certification, or entry-level qualification, this book offers structured
practice to reinforce key concepts. You’ll find a wide range of
multiple-choice questions, each followed by clear explanations to help
you understand not just the right answer, but why it’s correct.

The content in this guide is based on real-world exam objectives and
aligned with the types of questions and topics commonly found on
official tests. It’s ideal for learners who want to:

• Practice answering questions under realistic conditions,
• Improve accuracy and speed,
• Review explanations to strengthen weak areas, and
• Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but
alongside other resources like flashcards, textbooks, or hands-on
training. For best results, we recommend working through each
question, reflecting on the explanation provided, and revisiting the
topics that challenge you most.

Remember: successful test preparation isn’t about getting every question
right the first time, it’s about learning from your mistakes and improving
over time. Stay focused, trust the process, and know that every page you
turn brings you closer to success.

Let’s begin.

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 3

SA
M

PLE

How to Use This GuideHow to Use This Guide
This guide is designed to help you study more effectively and approach
your exam with confidence. Whether you're reviewing for the first time
or doing a final refresh, here’s how to get the most out of your Examzify
study guide:
1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what
you need to focus on. Your goal is to identify knowledge gaps early.
2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 – 45 minutes).
Review a handful of questions, reflect on the explanations.
3. Learn from the Explanations

After answering a question, always read the explanation, even if you got
it right. It reinforces key points, corrects misunderstandings, and
teaches subtle distinctions between similar answers.
4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions.
Revisit these regularly and track improvements over time.
5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without
pausing. Set a timer and simulate test-day conditions to build confidence
and time management skills.
6. Repeat and Review

Don’t just study once, repetition builds retention. Re-attempt questions
after a few days and revisit explanations to reinforce learning. Pair this
guide with other Examzify tools like flashcards, and digital practice tests
to strengthen your preparation across formats.

There’s no single right way to study, but consistent, thoughtful effort
always wins. Use this guide flexibly, adapt the tips above to fit your pace
and learning style. You've got this!

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 4

SA
M

PLE

Questions

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 5

SA
M

PLE

1. What will be displayed in the console for the statement
console.log(myDt + 10);?
A. The date ten days from now
B. 10
C. Today's date
D. Error

2. What will console.log(undefined) give during the execution
of checkAge({ age: 18 })?
A. You are an adult!
B. You are still an adult.
C. Hmm.. You don't have an age I guess
D. ReferenceError

3. How can you make API calls in LWC?
A. By using the `API.fetch()` method
B. Using `fetch()` in a JavaScript file
C. Through the `@api` decorator
D. Using `@wire` only

4. How do you bind a JavaScript method to a specific object?
A. By using the `apply()` method
B. By using the `bind()` method
C. By using the `call()` method
D. By using the `link()` method

5. In JavaScript, what does the method 'bind' do?
A. Executes a function immediately
B. Returns a new function with a bound context
C. Creates an object with a specific prototype
D. None of the above

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 6

SA
M

PLE

6. What is the purpose of the `Promise.all()` method?
A. To execute promises in series
B. To execute multiple promises concurrently and return a

single promise
C. To convert promises into callbacks
D. To limit the number of concurrent promises

7. What command is used to handle errors in JavaScript
promises?
A. catch()
B. handleError()
C. fail()
D. error()

8. What does the 'this' keyword refer to in JavaScript?
A. The global object
B. The parent function
C. The context in which a function is called
D. The last variable defined

9. How do you prevent creating a global variable when
mistyping a variable name?
A. Use 'let'
B. Use 'const'
C. Use 'use strict'
D. Use 'var'

10. What will be the output of name.giveLydiaPizza() when
the method is added to String.prototype?
A. "Just give Lydia pizza already!"
B. TypeError: not a function
C. SyntaxError
D. undefined

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 7

SA
M

PLE

Answers

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 8

SA
M

PLE

1. A
2. C
3. B
4. B
5. B
6. B
7. A
8. C
9. C
10. A

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 9

SA
M

PLE

Explanations

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 10

SA
M

PLE

1. What will be displayed in the console for the statement
console.log(myDt + 10);?
A. The date ten days from now
B. 10
C. Today's date
D. Error

The statement `console.log(myDt + 10);` will lead to the result of "The date ten days
from now" because of how JavaScript handles date objects and arithmetic operations.
When `myDt` is a Date object in JavaScript, adding a number to it directly performs an
implicit type conversion. JavaScript first converts the Date object to its numeric
representation, which corresponds to the number of milliseconds since January 1, 1970,
UTC. Then, it adds the specified number (in this case, 10) to this numeric value, treating
the number as milliseconds. Since there are 86,400,000 milliseconds in a day (1000
milliseconds multiplied by 60 seconds multiplied by 60 minutes multiplied by 24 hours),
adding 10 to the date will effectively add 10 milliseconds rather than days. However, if
the context implies adding days accurately, it often depends on how the operation is
interpreted. In typical practice with dates, adding days directly does not yield a specific
day; it shows how date manipulation frameworks handle it. If the intent was indeed to
increase the day value by a full 10 days, one would typically use a function to adjust the
date accurately. If you are seeing "today's

2. What will console.log(undefined) give during the execution
of checkAge({ age: 18 })?
A. You are an adult!
B. You are still an adult.
C. Hmm.. You don't have an age I guess
D. ReferenceError

In the context of the function call checkAge({ age: 18 }), when the code attempts to log
`undefined`, it indicates that the function is likely trying to access a property or variable
that doesn't exist within the provided object or its context. If the function is attempting
to reference a property named `age`, but for some reason, it's being referenced as
`undefined`, the output would communicate that the age value is not available. For
instance, if there's a check within the `checkAge` function that evaluates the age
property and it finds that the passed object does not provide a valid `age` property or the
reference is somehow incorrect, it would lead to this scenario. The console would print
the string indicating the absence of an age value, hence outputting "Hmm.. You don't
have an age I guess". This explains the correct outcome of the console logging while
emphasizing the potential misinterpretation of data passed to the function. This aligns
with the idea that if the age property is not accessible or was not defined correctly, it
would reflect as `undefined` in the console output.

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 11

SA
M

PLE

3. How can you make API calls in LWC?
A. By using the `API.fetch()` method
B. Using `fetch()` in a JavaScript file
C. Through the `@api` decorator
D. Using `@wire` only

Making API calls in Lightning Web Components (LWC) primarily involves using the
built-in `fetch()` function available in JavaScript. This function is a promise-based
method that allows developers to send HTTP requests and handle responses effectively. It
integrates well with the modern JavaScript ecosystem, making it a preferred choice for
fetching data from external APIs. When using `fetch()`, developers can specify various
options such as HTTP methods (GET, POST, PUT, DELETE, etc.), headers, body content
for requests, and handle responses using promises. This flexibility makes it suitable for a
variety of API interaction scenarios in LWC. While the decorator `@api` is used to expose
public properties and methods within a component to its parent component, it does not
facilitate direct API calls. The `@wire` service is used for reactive data binding but also
does not directly facilitate arbitrary API calls like the `fetch()` method does. Therefore,
utilizing the `fetch()` function is the most straightforward and effective way to perform
API interactions in a Lightning Web Component context.

4. How do you bind a JavaScript method to a specific object?
A. By using the `apply()` method
B. By using the `bind()` method
C. By using the `call()` method
D. By using the `link()` method

Binding a JavaScript method to a specific object is effectively accomplished through the
use of the `bind()` method. When you invoke `bind()` on a function, it returns a new
function where the `this` keyword is set to the specified object. This means that
whenever the new function is called, it will use the provided object as its context. For
instance, if you have an object with properties and methods, and you want to ensure a
method always references the object it belongs to, you can bind the method to that
object. This is particularly useful in scenarios where the method may be passed around as
a callback or used in event handlers, where it might lose its original context. The
`bind()` method is versatile and can also accept additional parameters, which will be
passed to the bound function whenever it is called. This capability allows for significant
flexibility in managing method contexts in your JavaScript code. The other methods
mentioned don't serve the purpose of permanently binding a method to a specific object
in the same manner. The `apply()` and `call()` methods are used to invoke functions
immediately with a specified context, rather than creating a new function. The `link()`
method, on the other hand, is not related to binding functions in JavaScript

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 12

SA
M

PLE

5. In JavaScript, what does the method 'bind' do?
A. Executes a function immediately
B. Returns a new function with a bound context
C. Creates an object with a specific prototype
D. None of the above

The method 'bind' in JavaScript is designed to create a new function that, when called,
has its 'this' keyword set to a specific value, which is passed as the first argument to
'bind'. This is especially useful when you want to ensure that a function operates in a
specific context, regardless of how or where it is invoked. When 'bind' is utilized, it does
not execute the function immediately but instead returns a new function that can be
executed later. The new function retains the specified context, which can be crucial for
maintaining the expected behavior in scenarios such as event handling or when passing
methods as callbacks. This behavior allows for greater control over the function’s
execution context and can prevent common pitfalls related to the 'this' keyword in
JavaScript, particularly in cases where the function might be called in a different context
than intended. Thus, the correct answer indicates that 'bind' creates a new function with
a predefined context, making it a powerful tool for managing function execution in
JavaScript.

6. What is the purpose of the `Promise.all()` method?
A. To execute promises in series
B. To execute multiple promises concurrently and return a

single promise
C. To convert promises into callbacks
D. To limit the number of concurrent promises

The `Promise.all()` method is designed to handle multiple promises concurrently and
returns a single promise that resolves when all of the promises in the iterable have
resolved or when the iterable contains no promises. This means that when using
`Promise.all()`, you can initiate multiple asynchronous operations at once, allowing them
to run simultaneously rather than sequentially. The promise returned by `Promise.all()`
will fulfill if all the promises it contains succeed, and it will reject with the reason of the
first promise that rejects. This behavior is particularly useful for scenarios where you
need to wait for several asynchronous operations to complete before proceeding, and you
want to optimize performance by running them in parallel instead of executing them
sequentially. For instance, if you're fetching multiple resources from an API, using
`Promise.all()` allows you to send all requests at once and then handle the responses
together, improving the efficiency of your application. This capability is what
distinguishes `Promise.all()` from other approaches that handle promises.

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 13

SA
M

PLE

7. What command is used to handle errors in JavaScript
promises?
A. catch()
B. handleError()
C. fail()
D. error()

The command used to handle errors in JavaScript promises is `catch()`. This method is
specifically designed to handle any errors that occur during the execution of a promise.
When a promise is rejected, the `catch()` method allows you to specify a function that
will run to manage that error, providing an opportunity to implement error handling
logic, such as logging the error or displaying an error message to the user. The `catch()`
method is a part of the promise chain and can be called after a `then()` block to capture
any rejections from the previous promise in the chain. This is particularly useful for
ensuring that your code can gracefully manage unexpected situations, maintaining a
robust application. The other choices do not exist as standard methods for error
handling in promises. Therefore, `catch()` is the only correct and relevant option to
handle errors within the context of JavaScript promises.

8. What does the 'this' keyword refer to in JavaScript?
A. The global object
B. The parent function
C. The context in which a function is called
D. The last variable defined

In JavaScript, the 'this' keyword is used to refer to the context in which a function is
called. It represents the object that is currently executing the code and can vary based on
how a function is invoked. This makes 'this' highly dynamic and context-sensitive. For
example, if a method is called on an object, 'this' refers to that particular object. If the
function is invoked in the global scope, 'this' refers to the global object (like `window` in
browsers or `global` in Node.js). In the context of an event handler, 'this' refers to the
element that the event is bound to. This behavior of 'this' allows for more flexibility in
JavaScript, enabling developers to write code that's adaptable to different invocation
contexts. Understanding the context of 'this' is crucial for effectively working with
object-oriented programming and callbacks in JavaScript.

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 14

SA
M

PLE

9. How do you prevent creating a global variable when
mistyping a variable name?
A. Use 'let'
B. Use 'const'
C. Use 'use strict'
D. Use 'var'

The correct choice, which is to use 'use strict', is a statement in JavaScript that enables
strict mode. When strict mode is enabled, it helps catch common coding errors such as
the accidental creation of global variables. In traditional JavaScript, if you mistype a
variable name (for example, typing `myVar` instead of `myVar1`), without strict mode
enabled, the interpreter will create a global variable with the incorrect name, which can
lead to difficult-to-debug issues in your code. However, when you include 'use strict' at
the beginning of your script or function, the code will throw an error if you try to assign a
value to an undeclared variable. This behavior helps enforce better coding practices and
reduces the chance of silent failures due to typos. Using 'let' and 'const' are also ways to
declare variables, but they do not inherently prevent the creation of global variables from
typos unless combined with strict mode. Both options impose block scope and avoid
hoisting, but strict mode specifically targets the misuse of variable declarations. As for
'var', it declares variables that are function-scoped or globally scoped, which doesn’t help
prevent global variable issues when a variable is mistyped. By utilizing '

10. What will be the output of name.giveLydiaPizza() when
the method is added to String.prototype?
A. "Just give Lydia pizza already!"
B. TypeError: not a function
C. SyntaxError
D. undefined

When the method `name.giveLydiaPizza()` is added to `String.prototype`, it means that
any string object can now utilize this function. The `String.prototype` object is the core
prototype for all string instances in JavaScript. By extending `String.prototype`, you
essentially create a method that can be called on any string, including the string value
represented by the `name` variable. If the implementation of `giveLydiaPizza` returns
the string "Just give Lydia pizza already!", then calling `name.giveLydiaPizza()` will yield
that exact string as output. This development provides a clear example of how prototype
inheritance works in JavaScript, which allows all string instances to access the new
method as part of their prototype chain. Thus, if the method is correctly defined to
return that specific string, the expected output when invoking it will indeed be "Just give
Lydia pizza already!"

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions 15

SA
M

PLE

Next StepsNext Steps
Congratulations on reaching the final section of this guide. You've taken
a meaningful step toward passing your certification exam and advancing
your career.

As you continue preparing, remember that consistent practice, review,
and self-reflection are key to success. Make time to revisit difficult
topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we’d love
to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

https://salesforcejsdev1.examzify.com

We wish you the very best on your exam journey. You've got this!

Sample study guide, visit https://salesforcejsdev1.examzify.com
for the full version with hundreds of practice questions v-1769475913 | Page 16

SA
M

PLE

