
Salesforce JavaScript
Developer I Certification
Practice Exam (Sample)
Study Guide

Everything you need from our exam experts!

Sample study guide. Visit https://salesforcejsdev1.examzify.com

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any
means, graphic, electronic, or mechanical, including photocopying,
recording, web distribution, taping, or by any information storage retrieval
system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable
sources accurate, complete, and timely information about this product.

1Sample study guide. Visit https://salesforcejsdev1.examzify.com for the full version

SA
M

PLE

Questions

2Sample study guide. Visit https://salesforcejsdev1.examzify.com for the full version

SA
M

PLE

1. How can a developer handle errors when making
asynchronous API calls in JavaScript?
A. By using if-else statements to catch errors.
B. By implementing the try-catch block.
C. By ignoring the error response.
D. By using console.log to track errors.

2. What is the main use of the `@wire` decorator in LWC?
A. To read data from external APIs
B. To read data from Salesforce and automatically update

components
C. To trigger events in child components
D. To handle user inputs

3. What does the 'this' keyword refer to in JavaScript?
A. The global object
B. The parent function
C. The context in which a function is called
D. The last variable defined

4. Which decorator is used to make a property reactive in
LWC?
A. @api
B. @track
C. @wire
D. @component

5. If a paragraph is clicked inside a div, what will be the
output in the console?
A. p div
B. div p
C. p
D. div

3Sample study guide. Visit https://salesforcejsdev1.examzify.com for the full version

SA
M

PLE

6. How long will the data in sessionStorage remain
accessible?
A. Forever, the data doesn't get lost.
B. When the user closes the tab.
C. When the user closes the entire browser, not only the tab.
D. When the user shuts off their computer.

7. When using forEach with an array, what console output will
be produced by the logArrayElements function defined as
console.log('a[' + index + '] = ' + element)?
A. a[0] = 2, a[1] = 5, a[2] = 9
B. 2, 5, 9
C. 0, 1, 2
D. undefined

8. What lines of code need to be added in the Student
constructor to properly inherit from Person?
A. super(fName, lName, age); and Student.prototype =

Object.create(Person.prototype);
B. Student.prototype = Person.call(this, fName, lName, age);
C. Person.call(this) and Student.prototype = new Person();
D. super(); and Object.create(Student.prototype);

9. What is the return type of methods defined in Lightning
Web Components?
A. Always undefined
B. Any valid JavaScript type
C. Only arrays
D. Only objects

10. What does the valueOf() method do when used on a String
object in JavaScript?
A. It converts the String object to a number
B. It returns the primitive string value
C. It creates a new string
D. It concatenates the string with another value

4Sample study guide. Visit https://salesforcejsdev1.examzify.com for the full version

SA
M

PLE

Answers

5Sample study guide. Visit https://salesforcejsdev1.examzify.com for the full version

SA
M

PLE

1. B
2. B
3. C
4. B
5. A
6. B
7. A
8. A
9. B
10. B

6Sample study guide. Visit https://salesforcejsdev1.examzify.com for the full version

SA
M

PLE

Explanations

7Sample study guide. Visit https://salesforcejsdev1.examzify.com for the full version

SA
M

PLE

1. How can a developer handle errors when making
asynchronous API calls in JavaScript?
A. By using if-else statements to catch errors.
B. By implementing the try-catch block.
C. By ignoring the error response.
D. By using console.log to track errors.

Implementing a try-catch block is an effective way to handle errors in asynchronous API
calls in JavaScript. This method allows developers to write cleaner code and manage
exceptions in a controlled way. Specifically, when you use a try-catch block, you can
attempt to execute code that may throw an error within the try section. If an error
occurs, execution is immediately transferred to the catch block, where the developer can
manage the error appropriately. This may include logging the error, showing a
user-friendly message, or attempting a retry mechanism. The use of try-catch is
particularly beneficial with asynchronous operations, such as promises and async/await
syntax, because it allows for a structured error handling mechanism without cluttering
the code with many conditional checks. This is crucial in maintaining the flow of
applications that rely on multiple network requests, enabling developers to ensure a
robust user experience even when issues occur with the backend or network. The other
options do not provide effective error-handling methods. For example, if-else statements
do not inherently capture exceptions that occur during asynchronous operations.
Ignoring error responses can lead to unhandled exceptions and degraded application
performance. Lastly, while console.log can be useful for tracking errors, it does not
actually handle them; it simply outputs

2. What is the main use of the `@wire` decorator in LWC?
A. To read data from external APIs
B. To read data from Salesforce and automatically update

components
C. To trigger events in child components
D. To handle user inputs

The `@wire` decorator in Lightning Web Components (LWC) is primarily used to read
data from Salesforce and automatically update components. When a component is wired
to a Salesforce data source using this decorator, it establishes a reactive connection. This
means that whenever the underlying data changes in Salesforce, the component using
`@wire` will automatically re-render to reflect those changes. This behavior enhances
the efficiency of data management within LWC by eliminating the need for manual data
fetching or event handling for data updates. Instead of writing code to periodically check
for data updates or to manage state, developers can simply utilize the `@wire` decorator
to ensure that their components always display the latest information from the Salesforce
back end. The other choices represent valid functionalities relevant to web development,
but they do not encapsulate the purpose of the `@wire` decorator as accurately as the
chosen answer. For instance, reading data from external APIs is handled differently in
LWC and is beyond the scope of the `@wire` decorator, which is specifically designed for
Salesforce data sources. Similarly, triggering events and handling user inputs pertains to
component interaction rather than data retrieval.

8Sample study guide. Visit https://salesforcejsdev1.examzify.com for the full version

SA
M

PLE

3. What does the 'this' keyword refer to in JavaScript?
A. The global object
B. The parent function
C. The context in which a function is called
D. The last variable defined

In JavaScript, the 'this' keyword is used to refer to the context in which a function is
called. It represents the object that is currently executing the code and can vary based on
how a function is invoked. This makes 'this' highly dynamic and context-sensitive. For
example, if a method is called on an object, 'this' refers to that particular object. If the
function is invoked in the global scope, 'this' refers to the global object (like `window` in
browsers or `global` in Node.js). In the context of an event handler, 'this' refers to the
element that the event is bound to. This behavior of 'this' allows for more flexibility in
JavaScript, enabling developers to write code that's adaptable to different invocation
contexts. Understanding the context of 'this' is crucial for effectively working with
object-oriented programming and callbacks in JavaScript.

4. Which decorator is used to make a property reactive in
LWC?
A. @api
B. @track
C. @wire
D. @component

In Lightning Web Components (LWC), the decorator used to make a property reactive is
@track. When you apply the @track decorator to a property in a component, it enables
the component to re-render whenever the property's value changes. This is important for
dynamic user interfaces that need to update based on user interactions or changes in
underlying data. The @track decorator ensures that the LWC engine is aware of changes
to the property and can efficiently trigger a re-render of the component when necessary.
Initially, @track was frequently used to mark properties of complex data types, such as
objects or arrays, to monitor changes within them. However, with more recent updates,
the reactivity in LWC has been enhanced, allowing for simpler state management and
reducing the need for tracking certain properties explicitly. The other decorators serve
different purposes: @api is used for public properties that can be accessed by parent
components, @wire is used for connecting a component to data from a Salesforce service,
and @component is not a valid LWC decorator. Therefore, @track is the correct choice
for making properties reactive in LWC.

9Sample study guide. Visit https://salesforcejsdev1.examzify.com for the full version

SA
M

PLE

5. If a paragraph is clicked inside a div, what will be the
output in the console?
A. p div
B. div p
C. p
D. div

When a paragraph is clicked inside a div, the output in the console will be "p div"
because of the way event propagation works in the DOM. When an event occurs, such as
a click, it travels through the DOM in two phases: the capturing phase and the bubbling
phase. In the bubbling phase, the event starts from the target element (the clicked
paragraph) and bubbles up to its parent elements (the div, in this case). In this
scenario, if you have an event listener on the paragraph element and one on the div
element, and you log the event or the elements in the listener, the context in which
you're logging is important. If the logging is set up in such a way that it includes both
the paragraph and its parent div, it may show the tags in the logged output as "p div,"
representing that the event originated from the paragraph and has bubbled up to the div.
This understanding highlights how event handling and propagation affect the output you
observe in the console when interacting with nested elements in the DOM.

6. How long will the data in sessionStorage remain
accessible?
A. Forever, the data doesn't get lost.
B. When the user closes the tab.
C. When the user closes the entire browser, not only the tab.
D. When the user shuts off their computer.

The data in sessionStorage is designed to be temporary and is specific to the current
browser tab. This means that the data stored in sessionStorage will remain accessible as
long as that particular tab is open. However, once the user closes the tab, all data
associated with that tab will be cleared and rendered inaccessible. This feature makes
sessionStorage particularly useful for maintaining data for short-term use during a
browsing session without persisting it beyond that tab's lifecycle. In contrast, the other
options imply longer data retention than what sessionStorage offers. The option stating
that data lasts forever is incorrect as sessionStorage is not permanent. Additionally,
suggesting that data persists until the entire browser is closed or when the computer is
shut off also misrepresents the nature of sessionStorage, as these scenarios would retain
data in localStorage rather than sessionStorage. Therefore, the correct understanding
lies in recognizing that the data is wiped from sessionStorage once the user closes the
tab.

10Sample study guide. Visit https://salesforcejsdev1.examzify.com for the full version

SA
M

PLE

7. When using forEach with an array, what console output will
be produced by the logArrayElements function defined as
console.log('a[' + index + '] = ' + element)?
A. a[0] = 2, a[1] = 5, a[2] = 9
B. 2, 5, 9
C. 0, 1, 2
D. undefined

The logArrayElements function makes use of the forEach method to iterate through each
element of an array. Within the forEach method, the console.log statement is structured
to output the index and the element in a specific format: 'a[' + index + '] = ' + element.
When this function is called on an array such as [2, 5, 9], for each element in the array,
the forEach function will: 1. Pass the current element to the logArrayElements function.
2. Provide the corresponding index of that element. Thus, when the first element (which
is 2) is processed, it will output "a[0] = 2". For the second element (5), it will output
"a[1] = 5", and for the third element (9), it will produce "a[2] = 9". Therefore, the
cumulative result printed in the console will be: - a[0] = 2 - a[1] = 5 - a[2] = 9 Hence,
this results in the final output format as stated in option A: a[0] = 2, a[1] = 5, a

8. What lines of code need to be added in the Student
constructor to properly inherit from Person?
A. super(fName, lName, age); and Student.prototype =

Object.create(Person.prototype);
B. Student.prototype = Person.call(this, fName, lName, age);
C. Person.call(this) and Student.prototype = new Person();
D. super(); and Object.create(Student.prototype);

The correct choice involves using the `super` function call to invoke the constructor of
the parent class (Person) and the `Object.create()` method to set up the prototype chain
properly. This allows the Student class to inherit behaviors and properties from the
Person class effectively. By invoking `super(fName, lName, age);`, the constructor of
Person is called with the appropriate parameters from the Student constructor, ensuring
that any properties defined in Person are initialized correctly for instances of Student.
This is an essential step for proper inheritance in JavaScript, especially when using
class-based syntax. The use of `Student.prototype = Object.create(Person.prototype);`
establishes the prototype chain such that instances of Student will have access to
methods defined on Person’s prototype, promoting effective inheritance of methods. In
contrast, the other options do not correctly establish the inheritance relationship or do
not utilize the constructor in the proper way: - Some of the options attempt to use `call`
or `new` inappropriately, which can lead to instances not being set up correctly or
methods not being accessible. - Using `super()` without a proper constructor call to the
parent class would also not achieve the necessary setup for inheritance. Thus, the
effective combination provided in the correct answer ensures proper

11Sample study guide. Visit https://salesforcejsdev1.examzify.com for the full version

SA
M

PLE

9. What is the return type of methods defined in Lightning
Web Components?
A. Always undefined
B. Any valid JavaScript type
C. Only arrays
D. Only objects

The return type of methods defined in Lightning Web Components can indeed be any
valid JavaScript type. This flexibility allows developers to create methods that can return
various data structures and types, including primitives like strings or numbers, objects,
arrays, or even null and undefined. In practice, this means you can craft methods that
suit the specific needs of your application without being constrained to a single return
type. For example, a method could return an object representing a user profile, an array
containing multiple items, or even a simple boolean value based on a condition. This
versatility enhances the dynamic nature of Lightning Web Components and allows for a
more engaging interaction with the data, as developers can tailor the return types to
meet the requirements of the component’s logic and design. Understanding that
methods can return any valid JavaScript type is crucial for efficiently building user
interfaces in Salesforce Lightning Web Components, as it supports a wide range of
coding practices and design patterns.

10. What does the valueOf() method do when used on a String
object in JavaScript?
A. It converts the String object to a number
B. It returns the primitive string value
C. It creates a new string
D. It concatenates the string with another value

The valueOf() method on a String object is designed to return the primitive string value
of that object. This method is useful because it allows you to retrieve the underlying
primitive data type from a String object without altering the content of the string itself.
In JavaScript, when you create a string using the String object (e.g., `new
String("Hello")`), you create an object wrapper around the primitive string. Using
valueOf() effectively unwraps this object and provides you with the string in its simplest
form, which is beneficial in scenarios where you might need to perform operations that
require a primitive value rather than an object reference. This primitive value can then
be used in string operations, comparisons, or even concatenations without the overhead
of dealing with the String object itself. Thus, understanding what valueOf() does is
crucial for working effectively with strings in JavaScript, particularly when considering
type coercion and the differences between objects and primitive values.

 v-1759627236 | Page 12Sample study guide. Visit https://salesforcejsdev1.examzify.com for the full version

SA
M

PLE

