

RTI Level 2 Technician - Propane Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. What is the designed operating pressure for ASME propane containers?**
 - A. 250 PSI**
 - B. 312.5 PSI**
 - C. 375 PSI**
 - D. 450 PSI**
- 2. What is the acceptable clearance distance between a propane tank and a building?**
 - A. 5 feet**
 - B. 10 feet**
 - C. 20 feet**
 - D. 15 feet**
- 3. What are the potential environmental impacts of propane leaks?**
 - A. Air pollution only**
 - B. Soil and water contamination**
 - C. Immediate combustion risks only**
 - D. No significant impacts**
- 4. Why is it crucial to check for leaks after maintenance on propane systems?**
 - A. To enhance operational efficiency**
 - B. To ensure safety and prevent explosions**
 - C. To meet regulatory compliance standards**
 - D. To optimize fuel consumption**
- 5. Which of the following factors can negatively impact propane system performance?**
 - A. Temperature fluctuations and pressure inconsistencies**
 - B. Consistent temperature and pressure**
 - C. Using standard plumbing materials**
 - D. Increased gas emissions**

6. When using steel tubing flare connections, what is a necessary step?

- A. The ends must be sanded**
- B. Steel tubing must be double flared**
- C. It should be used with Teflon tape**
- D. Only single flares are required**

7. How does a non-restricted OPD affect the filling of an ASME tank?

- A. It allows for faster filling**
- B. It may stop the fill process prematurely**
- C. It prevents overfilling**
- D. It regulates pressure more effectively**

8. For how long must TC cylinders be recertified after their initial certification?

- A. Every 5 years**
- B. Every 10 years**
- C. Every 12 years**
- D. Every 15 years**

9. What happens if an OPD is not functioning correctly during the filling process?

- A. The fill will continue without stopping**
- B. The tank could overfill**
- C. The filling process may halt unexpectedly**
- D. Gas may leak from the tank**

10. What is the vapor pressure of propane at 130°F?

- A. 267 PSI**
- B. 287 PSI**
- C. 297 PSI**
- D. 277 PSI**

Answers

SAMPLE

1. B
2. B
3. B
4. B
5. A
6. B
7. B
8. A
9. C
10. B

SAMPLE

Explanations

SAMPLE

1. What is the designed operating pressure for ASME propane containers?

- A. 250 PSI**
- B. 312.5 PSI**
- C. 375 PSI**
- D. 450 PSI**

The designed operating pressure for ASME (American Society of Mechanical Engineers) propane containers is indeed 312.5 PSI. This pressure is a standard established to ensure safe operation within the design limits of the containers used for storing and dispensing propane. It is essential for the integrity of the container and the safety of the propane systems that this operating pressure is maintained and adhered to during usage. ASME containers are constructed to specific guidelines, including the ability to withstand this pressure safely. This compliance is part of regulations that govern the safe design, manufacture, and testing of pressure vessels used in the industry. The designation of 312.5 PSI allows for effective operation while also offering a safety margin to accommodate fluctuations in pressure and temperature, ensuring the safety and reliability of propane storage systems. Higher pressures, such as those indicated in some incorrect options, exceed the standard for most ASME containers and could lead to safety hazards if not properly accounted for in container and system design. Each of those pressures would result in containers needing different materials or construction methods to ensure safety and compliance. Thus, 312.5 PSI stands as the correct and widely accepted operating pressure in the industry for ASME propane containers.

2. What is the acceptable clearance distance between a propane tank and a building?

- A. 5 feet**
- B. 10 feet**
- C. 20 feet**
- D. 15 feet**

The acceptable clearance distance between a propane tank and a building is typically established to ensure safety and reduce fire hazards. A distance of 10 feet is often required by regulations and safety standards. This clearance allows for safe operation, maintenance, and emergency access to the tank, while also reducing the risk of fire spreading from the tank to the structure. The 10-foot distance ensures that any potential leaks or spills do not come into contact with the building, which could escalate into a dangerous situation. Additionally, maintaining this clearance creates a safer environment for occupants of the building and allows for adequate space for any necessary inspections or emergency response activities. Understanding and adhering to these clearance requirements is crucial for both safety and compliance with industry regulations.

3. What are the potential environmental impacts of propane leaks?

- A. Air pollution only
- B. Soil and water contamination**
- C. Immediate combustion risks only
- D. No significant impacts

The potential environmental impacts of propane leaks include both soil and water contamination, making it essential to consider the broader implications of such leaks. When propane escapes into the environment, it can lead to several harmful effects. Propane is a hydrocarbon, and while it does not dissolve in water, it can still affect water supplies and aquatic environments if it reaches them. When released into soil, propane can displace oxygen and create an environment that can hinder microbial processes vital for soil health. Additionally, although propane itself is less harmful than some other hydrocarbons, it can contribute to other environmental issues. When it evaporates, it can form ground-level ozone, which is a significant air pollutant contributing to smog formation. This can have further implications for both human health and the environment. The option indicating that there are no significant impacts overlooks these serious considerations. Moreover, the notion that propane leaks are solely about immediate combustion risks downplays the long-term effects on ecosystems and the environment. Understanding these impacts is critical for developing safety and mitigation strategies within the propane industry.

4. Why is it crucial to check for leaks after maintenance on propane systems?

- A. To enhance operational efficiency
- B. To ensure safety and prevent explosions**
- C. To meet regulatory compliance standards
- D. To optimize fuel consumption

Checking for leaks after maintenance on propane systems is crucial primarily to ensure safety and prevent explosions. Propane is a highly flammable gas, and any leaks can create a dangerous environment where accumulation of gas can lead to fires or explosions. Maintenance activities, such as adjustments or replacements of components, can sometimes unintentionally damage seals or threads where connections are made, increasing the risk of leaks. Conducting a thorough leak check allows technicians to identify and rectify any issues before the system is put back into service, thereby protecting personnel, property, and the environment. This practice not only safeguards those who work with or around propane systems but also enhances the overall reliability and safety of the propane system in operation. While enhancing operational efficiency, meeting regulatory compliance standards, and optimizing fuel consumption are important aspects of maintaining propane systems, the immediate and most critical concern following maintenance is the safety of the system and its users, which is distinctly addressed by checking for leaks.

5. Which of the following factors can negatively impact propane system performance?

- A. Temperature fluctuations and pressure inconsistencies**
- B. Consistent temperature and pressure**
- C. Using standard plumbing materials**
- D. Increased gas emissions**

Temperature fluctuations and pressure inconsistencies can significantly hinder the performance of propane systems. Propane, like many gases, is sensitive to changes in temperature and pressure, which can affect its vaporization and flow characteristics. When temperatures fluctuate, propane may not vaporize properly, potentially leading to incomplete combustion or reduced heating efficiency. Similarly, inconsistencies in pressure can cause variations in the delivery of propane to appliances, leading to erratic performance and possible safety issues. A consistent pressure and temperature, on the other hand, ensure that the propane system operates smoothly and efficiently, providing the intended output for heating and other applications. Using standard plumbing materials is acceptable in many cases, but it's crucial to use materials specifically rated for use with propane to ensure safety and compliance. Increased gas emissions could indicate a problem with combustion or system leaks rather than a factor that would negatively impact performance directly. Therefore, maintaining stable temperature and pressure are fundamental for optimal propane system functionality.

6. When using steel tubing flare connections, what is a necessary step?

- A. The ends must be sanded**
- B. Steel tubing must be double flared**
- C. It should be used with Teflon tape**
- D. Only single flares are required**

When using steel tubing flare connections, double flaring is essential to ensure a proper and secure seal. A double flare involves creating two flares on the end of the tubing, which increases the mating surface and creates a more robust connection. This type of connection helps to accommodate any thermal expansion and contraction as well as vibrations that may occur during the system's operation. Additionally, the double flare provides enhanced resistance to leaks, making it particularly important in propane applications where safety is critical. A properly executed double flare will also help distribute forces evenly across the flare fitting, ensuring a stronger and more reliable connection over time. While some other methods or materials might be applicable in different contexts, for steel tubing flare connections specifically, double flaring is the industry-standard practice to ensure safety and integrity in propane systems.

7. How does a non-restricted OPD affect the filling of an ASME tank?

- A. It allows for faster filling**
- B. It may stop the fill process prematurely**
- C. It prevents overfilling**
- D. It regulates pressure more effectively**

A non-restricted OPD (Overfill Prevention Device) is designed to help prevent the overfilling of cylinders during the propane filling process. If an ASME (American Society of Mechanical Engineers) tank incorporates such an OPD, its function can directly impact the filling process. Specifically, the presence of a non-restricted OPD may lead to the filling process being halted prematurely. This occurs because the OPD is configured to sense when the liquid propane reaches a certain level within the tank, effectively stopping the fill before reaching full capacity to prevent overflow. As a result, if there is insufficient consideration of the tank's fill level or the way it is being filled, the OPD could trigger an early stop in the filling operation, potentially leading to less propane being filled than the tank's maximum capacity. The other responses focus on aspects of filling that do not apply to non-restricted OPDs. The OPD does not inherently allow for faster filling, nor does it serve to regulate pressure more effectively. Additionally, while it does work to prevent overfilling, that is a specific function rather than a direct effect on how the fill process itself is conducted—hence why stating it may stop the fill process prematurely encapsulates the OPD's effect

8. For how long must TC cylinders be recertified after their initial certification?

- A. Every 5 years**
- B. Every 10 years**
- C. Every 12 years**
- D. Every 15 years**

The correct answer is that TC cylinders must be recertified every 5 years after their initial certification. This requirement is in place to ensure the safety and integrity of the cylinders used to transport and store propane and other gases. Regular recertification helps to identify any potential issues such as corrosion, structural damage, or other defects that could compromise the cylinder's ability to safely contain pressurized gas. By adhering to a 5-year recertification schedule, users can be confident that the cylinders are still suitable for continued use and comply with safety regulations. The designation of a shorter recertification period compared to the longer intervals associated with other types of cylinders reflects the specific safety concerns and operational standards for TC cylinders in gas handling.

9. What happens if an OPD is not functioning correctly during the filling process?

- A. The fill will continue without stopping**
- B. The tank could overfill**
- C. The filling process may halt unexpectedly**
- D. Gas may leak from the tank**

The correct choice reflects that if an Overfill Prevention Device (OPD) is not functioning correctly during the filling process, the filling may halt unexpectedly. OPDs are critical safety devices designed to prevent the overfilling of propane tanks by automatically stopping the flow of propane when the tank reaches a certain fill level. If the OPD malfunctions, it can lead to unexpected interruptions in the filling process, signaling either a failure in the mechanical operation or a fault detected in the system. While it's true that an OPD malfunction could potentially lead to a situation where the tank might overflow, the primary designed function of the OPD is to halt the process when it detects the tank is near its capacity. Therefore, if this device fails, the filling can stop abruptly to avoid further complications, including overfilling or gas leaks. Understanding this mechanism is crucial in ensuring safe propane handling and adherence to regulatory standards.

10. What is the vapor pressure of propane at 130°F?

- A. 267 PSI**
- B. 287 PSI**
- C. 297 PSI**
- D. 277 PSI**

The vapor pressure of propane at 130°F is 287 PSI. This value is important for understanding the behavior of propane under different temperature conditions. Vapor pressure refers to the pressure exerted by a vapor in equilibrium with its liquid at a given temperature. At elevated temperatures, such as 130°F, propane's vapor pressure increases significantly compared to lower temperatures. This information is crucial for technicians as it helps them determine safe handling, storage, and usage practices for propane. Knowing the vapor pressure can prevent overpressure situations in storage tanks and ensure proper system design to accommodate the pressure levels of propane under various thermal conditions. In this context, other provided values do not accurately reflect the vapor pressure of propane at 130°F, reinforcing the significance of using precise data for safety and operational effectiveness. Understanding these specifics allows technicians to work confidently with propane and adhere to safety regulations.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://rvtilvl2techpropane.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE