# RRO Built-Up Roofing (BUR) Roof Surfacing Materials Practice Exam (Sample)

**Study Guide** 



Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

#### ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.



### **Questions**



- 1. Why is a higher moisture content permitted for crushed roofing slag compared to crushed stone and gravel?
  - A. It enhances the weight of the material
  - B. Because of moisture entrapment in the internal pores of the pieces of slag
  - C. It improves the overall durability of the roofing
  - D. It allows for a smoother application process
- 2. What is a common indicator that BUR insulation might be failing?
  - A. A noticeable increase in energy costs
  - B. Frequent roof leaks despite repairs
  - C. Loss of color in roofing material
  - D. Visible wear and tear on the surface
- 3. What is typically included in the initial inspection of a BUR roof?
  - A. Checking for leaks, structural damage, and debris
  - B. Assessing color preferences from building owners
  - C. Calculating the cost of new installation
  - D. Evaluating other contractors' work
- 4. What is a "stress test" in the context of BUR material development?
  - A. A test to certify the color of roofing materials
  - B. A test to evaluate the performance under various conditions
  - C. A test to assess installation speed
  - D. A test to determine the cost-effectiveness of materials
- 5. What is a common benefit of using modified bitumen in BUR systems?
  - A. It is less expensive
  - B. It improves flexibility and durability
  - C. It requires no maintenance
  - D. It enhances aesthetic appeal

- 6. Which of the following is a common characteristic of VOCs?
  - A. They are completely non-toxic
  - B. They can contribute to air quality issues
  - C. They are only found in primers
  - D. They evaporate at very low temperatures
- 7. What is the significance of "fire rating" in BUR materials?
  - A. It indicates the thermal insulation qualities
  - B. It measures the energy efficiency of the roof
  - C. It indicates the roof's resistance to fire spread
  - D. It reflects the durability of the roofing materials
- 8. What kind of maintenance practices should be performed on a BUR roof?
  - A. Daily cleaning and painting
  - B. Regular inspections, clearing debris, and repairing damaged areas
  - C. Replacing the entire roof every year
  - D. Only cleaning after heavy storms
- 9. What is the viscosity range for Asphalt Primer Type II?
  - A. 120 to 800 Seconds
  - **B. 100 to 600 Seconds**
  - **C. 80 to 400 Seconds**
  - **D. 150 to 900 Seconds**
- 10. In which country is Coal Tar Pitch (CTP) not commonly used today?
  - A. United States
  - B. Mexico
  - C. Canada
  - D. Australia

#### **Answers**



- 1. B 2. A 3. A 4. B 5. B 6. B 7. C 8. B

- 9. A 10. C



### **Explanations**



- 1. Why is a higher moisture content permitted for crushed roofing slag compared to crushed stone and gravel?
  - A. It enhances the weight of the material
  - B. Because of moisture entrapment in the internal pores of the pieces of slag
  - C. It improves the overall durability of the roofing
  - D. It allows for a smoother application process

The correct answer highlights that a higher moisture content is permitted for crushed roofing slag due to the moisture entrapment in the internal pores of the pieces of slag. This characteristic is important because crushed roofing slag is typically more porous than other materials like crushed stone and gravel. The internal structure of slag allows it to retain moisture without adversely affecting its performance in roofing applications. This moisture retention can help improve the adhesion characteristics of the roofing system, providing better overall performance when used as a surfacing material. While the other options might seem plausible, they do not accurately relate to the properties of crushed roofing slag. Enhancing the weight of the material, improving overall durability, or allowing for a smoother application process are not inherent characteristics linked to the moisture content of the materials involved in the same way that moisture entrapment is directly tied to the physical structure of roofing slag.

- 2. What is a common indicator that BUR insulation might be failing?
  - A. A noticeable increase in energy costs
  - B. Frequent roof leaks despite repairs
  - C. Loss of color in roofing material
  - D. Visible wear and tear on the surface

A noticeable increase in energy costs serves as a strong indicator that BUR insulation might be failing. This increase can occur when the insulation is no longer performing efficiently, allowing heat to escape in winter or making the interior space harder to cool in summer. Effective roofing insulation plays a crucial role in temperature regulation and energy efficiency; when it deteriorates, the insulation fails to maintain the desired indoor climate, leading to higher energy consumption and ultimately escalating costs. The other options reflect issues that may arise with roofing systems, but they are not as directly linked to insulation failure. Frequent roof leaks, for instance, may suggest problems with the roofing material or installation rather than the insulation itself. Loss of color in roofing materials can indicate age or wear but does not specifically relate to the thermal performance of the insulation. Visible wear and tear on the surface may show that the roofing system is degrading, but it doesn't necessarily point to insulation failure, which primarily affects energy efficiency rather than structural integrity or aesthetics.

### 3. What is typically included in the initial inspection of a BUR roof?

- A. Checking for leaks, structural damage, and debris
- B. Assessing color preferences from building owners
- C. Calculating the cost of new installation
- D. Evaluating other contractors' work

The initial inspection of a BUR (Built-Up Roofing) system is essential for identifying any issues that may affect the roof's performance and longevity. Typically, this inspection includes checking for leaks, structural damage, and debris. Leaks can indicate underlying problems in the roofing system, such as compromised materials or improper installation, which need immediate attention to prevent water intrusion and further damage. Structural damage can impact the integrity of the roof and cause safety concerns, making it a critical aspect of the initial assessment. Additionally, the presence of debris can obstruct drainage and promote deterioration of the roof surfaces, so its removal and assessment are necessary as part of ensuring the roof's functionality. The other options do not align with the primary objectives of an initial roof inspection. While understanding color preferences might be relevant for aesthetic decisions in future projects, it does not pertain to the structural or functional evaluation of the roof. Similarly, calculating costs for new installations or evaluating other contractors' work falls outside the scope of an initial inspection focused on assessing the current state of the roof in question. Thus, the most appropriate choice reflecting the fundamental aspects of a BUR roof inspection is indeed checking for leaks, structural damage, and debris.

- 4. What is a "stress test" in the context of BUR material development?
  - A. A test to certify the color of roofing materials
  - B. A test to evaluate the performance under various conditions
  - C. A test to assess installation speed
  - D. A test to determine the cost-effectiveness of materials

In the context of BUR (Built-Up Roofing) material development, a "stress test" refers specifically to the evaluation of how the roofing materials perform under various conditions. This includes assessing their durability, load capacity, resistance to environmental factors such as temperature extremes, moisture, UV exposure, and mechanical stress. Understanding a material's performance in different scenarios is crucial for predicting how it will behave over its lifespan, ensuring that it can withstand the demands it will face once installed. By conducting these tests, manufacturers can gauge the reliability and suitability of materials for specific roofing applications, ultimately contributing to better performance and longevity of the roofing systems. The other options, while relevant to roofing materials in general, do not describe the specific nature of a stress test. Color certification, installation speed, and cost-effectiveness assessments focus on different aspects, such as aesthetics, efficiency, and economic factors, rather than the material's performance under varying stress conditions.

# 5. What is a common benefit of using modified bitumen in BUR systems?

- A. It is less expensive
- B. It improves flexibility and durability
- C. It requires no maintenance
- D. It enhances aesthetic appeal

Using modified bitumen in Built-Up Roofing (BUR) systems is particularly beneficial because it significantly improves flexibility and durability. This is important for roofing applications as flexibility allows the material to better withstand temperature fluctuations, avoiding cracks and failures that can occur with traditional asphalt. Modified bitumen typically incorporates performance-enhancing polymers which also contribute to its resistance to UV radiation, making it more durable over time compared to standard bitumen. This enhanced durability ultimately supports a longer lifespan for the roofing system and reduces the likelihood of repairs or replacement, providing a solid long-term solution for flat and low-slope roofs. In contrast, while some options may suggest advantages such as lower cost, lower maintenance, or aesthetic appeal, the primary and most recognized benefit of modified bitumen lies in its improved performance characteristics, especially regarding flexibility and overall durability in varying environmental conditions.

# 6. Which of the following is a common characteristic of VOCs?

- A. They are completely non-toxic
- B. They can contribute to air quality issues
- C. They are only found in primers
- D. They evaporate at very low temperatures

VOCs, or volatile organic compounds, are known for their significant impact on air quality. When released into the atmosphere, they can react with other pollutants and sunlight to form ground-level ozone, which is a major component of smog. This contributes to various health issues and environmental concerns, making it crucial to monitor and control their emissions. While other options mention characteristics that are not applicable to VOCs, the understanding that they can lead to air quality problems is a vital aspect of their definition and impact. The ability of VOCs to evaporate at relatively low temperatures contributes to their presence in various products, but their primary concern lies in their contribution to air pollution and health hazards.

#### 7. What is the significance of "fire rating" in BUR materials?

- A. It indicates the thermal insulation qualities
- B. It measures the energy efficiency of the roof
- C. It indicates the roof's resistance to fire spread
- D. It reflects the durability of the roofing materials

The significance of "fire rating" in Built-Up Roofing (BUR) materials primarily lies in its measurement of the roof's resistance to fire spread. Fire ratings are crucial for understanding how well a roofing system can withstand exposure to flame and prevent the spread of fire across its surface. This is particularly important in commercial and industrial applications, where the risk of fire may be higher, and building codes often require specific fire ratings to enhance safety measures. A high fire rating indicates that the roofing material has been tested under stringent conditions and has demonstrated the ability to resist ignition and limit the spread of flames. This not only protects the building but also helps to safeguard occupants and assets within the structure. Fire-resistant roofing materials can also lower insurance premiums and aid in compliance with local building regulations. In contrast, while thermal insulation qualities, energy efficiency, and durability are important characteristics of roofing materials, they do not directly pertain to fire ratings. These attributes focus more on temperature management, overall energy costs, and the longevity of materials under various environmental conditions, rather than their specific performance in fire resistance scenarios.

# 8. What kind of maintenance practices should be performed on a BUR roof?

- A. Daily cleaning and painting
- B. Regular inspections, clearing debris, and repairing damaged areas
- C. Replacing the entire roof every year
- D. Only cleaning after heavy storms

Regular inspections, clearing debris, and repairing damaged areas are crucial maintenance practices for a Built-Up Roofing (BUR) system. The structure of BUR roofs is designed to provide durability and weather resistance, but over time, various factors such as weather conditions, UV exposure, and physical damage can impact their performance. Conducting routine inspections allows for the early identification of potential issues, such as cracks, blisters, or areas of surface wear. By addressing these problems promptly, the overall lifespan of the roof can be significantly extended, preventing more extensive and costly repairs later. Clearing debris is also essential because accumulated leaves, branches, or dirt can retain moisture, leading to deterioration of roofing materials and potential leaks. This proactive approach helps maintain the roof's integrity and performance. Repairing any damaged areas promptly ensures that small issues do not escalate into larger ones that might compromise the roof system. Therefore, a regular maintenance regimen that includes inspections, debris removal, and timely repairs is vital for the longevity and effectiveness of BUR roofing systems.

#### 9. What is the viscosity range for Asphalt Primer Type II?

- A. 120 to 800 Seconds
- B. 100 to 600 Seconds
- **C. 80 to 400 Seconds**
- **D. 150 to 900 Seconds**

The viscosity range for Asphalt Primer Type II is indeed specified to fall between 120 to 800 seconds. This viscosity range is crucial for ensuring that the primer can be easily applied and effectively penetrates the substrate to promote adhesion between the roofing materials. Understanding viscosity in this context is important for contractors and materials specialists because it influences how well the primer can spread on various surfaces. A primer with a viscosity within this range ensures that it is fluid enough to apply evenly while still being thick enough to adhere effectively, thus promoting good bonding with subsequent layers of roofing material. This specific viscosity range is often set to ensure compliance with industry standards, which are paramount for achieving long-lasting and water-resistant roofing systems. Adjusting the viscosity can change the application properties of the primer, which is why this specific range is provided in the guidelines for its use.

# 10. In which country is Coal Tar Pitch (CTP) not commonly used today?

- A. United States
- B. Mexico
- C. Canada
- D. Australia

Coal Tar Pitch (CTP) is recognized for its durability and resistance to moisture, making it a traditional choice in built-up roofing systems. However, its use has decreased significantly in various regions due to health and environmental concerns associated with the components found in coal tar. In Canada, regulations around the use of harmful substances have led to a shift away from CTP. The country has implemented stricter guidelines regarding the use of materials that contain polycyclic aromatic hydrocarbons (PAHs), which are prevalent in coal tar products. This has pushed the roofing industry to favor alternatives that are safer and more environmentally friendly. Consequently, while other countries may still utilize coal tar pitch due to different regulatory environments, Canada has seen a decline in its usage, making it stand out compared to the other options presented. In contrast, the United States, Mexico, and Australia still see varying levels of CTP use in roofing applications, influenced by individual market practices and regulations.