

Road Safety Professional Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. What is another common name for a strategic highway safety plan?**
 - A. Roadway safety audit**
 - B. Highway safety improvement program**
 - C. Road safety action plan**
 - D. Highway performance monitoring system**
- 2. Besides economic costs, what is the other type of person-level cost sometimes considered when valuing crash safety?**
 - A. Non-economic costs**
 - B. Quality-adjusted life year cost**
 - C. Modified cost of living**
 - D. Societal cost**
- 3. What is a potential challenge in collision reconstruction?**
 - A. Excessive data availability**
 - B. Inaccurate witness testimonies**
 - C. High costs of vehicle repairs**
 - D. Limited availability of vehicles**
- 4. How does a roundabout differ from a traditional intersection?**
 - A. It allows pedestrians to cross more easily**
 - B. It eliminates stop signs completely**
 - C. It encourages continuous vehicle flow**
 - D. It requires more complex navigation**
- 5. What is one physical infrastructure improvement that can help reduce speeding?**
 - A. Wider road lanes**
 - B. Installing speed bumps**
 - C. Adding more traffic lights**
 - D. Increased road signage**

6. Which of the following is NOT a direct effect of vehicle maintenance on road safety?

- A. Improving vehicle aesthetics**
- B. Reducing mechanical failures**
- C. Ensuring optimal vehicle performance**
- D. Enhancing safety feature functionality**

7. What % probability of death corresponds to a rating of "6" on the Maximum Abbreviated Injury Scale?

- A. 0**
- B. 8-10%**
- C. 5-50%**
- D. 100%**

8. A local agency expects a 14% reduction in right-angle crashes with a CMF of 0.86. If the AADT on the major street is 10,000 and on the minor street is 8,000, what improvement can they expect?

- A. A 10% reduction in right-angle crashes**
- B. A 14% reduction in right-angle crashes**
- C. A 20% reduction in right-angle crashes**
- D. A 25% increase in right-angle crashes**

9. How is the 'human error' aspect addressed in road safety planning?

- A. By expecting complete driver compliance with laws**
- B. Through the Safe System approach which acknowledges human limitations**
- C. By conducting more rigorous driver tests**
- D. By enforcing longer driving hours without breaks**

10. What aspect of road safety can be addressed by urban planning?

- A. Only public transport systems**
- B. Road layouts and traffic flow**
- C. Private vehicle usage**
- D. Pedestrian behavior only**

Answers

SAMPLE

1. C
2. B
3. B
4. C
5. B
6. A
7. D
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. What is another common name for a strategic highway safety plan?

- A. Roadway safety audit**
- B. Highway safety improvement program**
- C. Road safety action plan**
- D. Highway performance monitoring system**

A strategic highway safety plan is often referred to as a road safety action plan. This term signifies a comprehensive approach to enhancing roadway safety by identifying key issues, establishing performance measures, and outlining strategies to reduce fatalities and serious injuries on the roads. The road safety action plan typically involves collaboration among various stakeholders, including government agencies, local organizations, and community groups, to develop targeted initiatives aimed at improving safety. This aligns with the goals of a strategic highway safety plan, which is designed to set forth a clear vision for safety improvements on highways. The other options, while relevant to roadway safety discussions, refer to different processes or frameworks and do not specifically capture the essence of a strategic highway safety plan. For instance, a roadway safety audit typically involves a systematic examination of existing road conditions rather than a comprehensive strategic approach. The highway safety improvement program focuses on specific projects to enhance safety but is not synonymous with a broad planning document. Meanwhile, the highway performance monitoring system is primarily concerned with tracking traffic performance metrics rather than addressing safety strategies directly.

2. Besides economic costs, what is the other type of person-level cost sometimes considered when valuing crash safety?

- A. Non-economic costs**
- B. Quality-adjusted life year cost**
- C. Modified cost of living**
- D. Societal cost**

The consideration of quality-adjusted life year (QALY) costs in valuing crash safety reflects the impact of accidents on individual well-being and life quality. QALYs combine the quantity and quality of life lived, providing a measure that incorporates not just the duration of life but also the health-related quality of that life. When evaluating the consequences of road crashes, using QALYs helps to understand the broader implications of injuries and fatalities beyond mere financial aspects. This method allows for a more holistic approach to understanding the human cost of crashes, as it emphasizes the importance of preventing injuries that can lead to long-term disabilities or reductions in quality of life. It is particularly useful in public health and policy formulations, as it helps stakeholders prioritize interventions based on their potential to improve both duration and quality of life for those affected by road incidents. In contrast, non-economic costs, modified cost of living, and societal costs do address other relevant aspects but do not encapsulate the individual-level impact on health and life quality as effectively as the QALY metric does.

3. What is a potential challenge in collision reconstruction?

- A. Excessive data availability
- B. Inaccurate witness testimonies**
- C. High costs of vehicle repairs
- D. Limited availability of vehicles

In collision reconstruction, one of the significant challenges is the presence of inaccurate witness testimonies. Witness accounts can vary widely due to different perspectives, memory discrepancies, or biases, leading to difficulties in constructing an accurate picture of the events that took place during the collision. Such inaccuracies can undermine the reliability of the reconstruction efforts and may influence legal proceedings, insurance claims, and safety analyses. The subjective nature of human observation means that witnesses might misinterpret what they saw or fail to recall critical details correctly, which can lead to conflicting reports. This challenge necessitates careful consideration of witness statements and often requires corroboration through physical evidence and other data sources to ensure that the final reconstruction reflects the reality of the incident as closely as possible.

4. How does a roundabout differ from a traditional intersection?

- A. It allows pedestrians to cross more easily
- B. It eliminates stop signs completely
- C. It encourages continuous vehicle flow**
- D. It requires more complex navigation

A roundabout is designed specifically to facilitate the continuous flow of traffic, which is a fundamental difference from traditional intersections. In a traditional intersection, vehicles often encounter stop signs or traffic signals, leading to potential delays and the need for vehicles to come to a complete stop. Roundabouts, on the other hand, allow vehicles to merge at slower speeds rather than stopping, which significantly reduces waiting time and prevents backups. This design enhances safety by lowering the likelihood of severe accidents, as the circular nature of roundabouts promotes lower speeds and minimizes the points of conflict between vehicles compared to an intersection where movements can directly cross paths. Additionally, because vehicles yield upon entering the roundabout, this traffic pattern maintains a steady movement of vehicles, making it easier for drivers to navigate without waiting for lights to change or for gaps in traffic. While all the other options offer some insights about roundabouts, the focus on continuous vehicle flow distinctly underscores the critical operational benefit of roundabouts compared to traditional intersections, where stopping and starting is more prevalent.

5. What is one physical infrastructure improvement that can help reduce speeding?

- A. Wider road lanes**
- B. Installing speed bumps**
- C. Adding more traffic lights**
- D. Increased road signage**

Installing speed bumps is an effective physical infrastructure improvement that directly addresses speeding by forcing vehicles to reduce their speed. Speed bumps are designed as physical obstacles that create a noticeable change in the roadway, compelling drivers to slow down as they approach them. This is particularly useful in areas where pedestrians are present, such as residential neighborhoods or near schools, as it enhances safety by reducing vehicular speeds, thereby decreasing the likelihood of accidents. While other options like wider road lanes, more traffic lights, and increased road signage can influence traffic flow and driver behavior, they do not have the immediate, tactile impact that speed bumps offer. Wider lanes may create a perception of increased speed, more traffic lights could reduce flow but may not directly address speed, and road signs primarily serve to inform rather than physically alter driving behavior. Speed bumps, by requiring drivers to navigate over them at slower speeds, serve as a direct and effective measure to mitigate speeding in various environments.

6. Which of the following is NOT a direct effect of vehicle maintenance on road safety?

- A. Improving vehicle aesthetics**
- B. Reducing mechanical failures**
- C. Ensuring optimal vehicle performance**
- D. Enhancing safety feature functionality**

Improving vehicle aesthetics is not a direct effect of vehicle maintenance on road safety. While maintaining a vehicle can involve cleaning and cosmetic repairs that may enhance its appearance, these factors do not directly influence the safety of the vehicle in terms of its operational effectiveness or ability to protect the occupants in the event of a crash. In contrast, reducing mechanical failures, ensuring optimal vehicle performance, and enhancing the functionality of safety features are all critical aspects of vehicle maintenance that directly impact road safety. Mechanical failures, such as brake or tire issues, can lead to accidents, while optimal performance ensures that a vehicle responds effectively in various driving conditions. Moreover, safety features like airbags and anti-lock braking systems must function correctly to protect occupants and prevent collisions. Thus, while aesthetics can contribute to a driver's pride in ownership, they do not contribute to the safety of the vehicle itself or the overall road safety environment.

7. What % probability of death corresponds to a rating of "6" on the Maximum Abbreviated Injury Scale?

- A. 0**
- B. 8-10%**
- C. 5-50%**
- D. 100%**

A rating of "6" on the Maximum Abbreviated Injury Scale (MAIS) corresponds to a probability of death. The MAIS is a scoring system used in trauma research to classify injury severity based on the most severe injury sustained by an individual. The scale ranges from 1 to 6, with 1 indicating minor injuries and 6 indicating a fatal injury. A MAIS rating of 6 is categorized as "fatal," which means that the injuries are considered to have a very high likelihood of resulting in death. According to research and data surrounding trauma injuries, a MAIS score of 6 is associated with a 100% probability of death for the individual. This reflects that such injuries are not survivable. Other potential options represent varying probabilities of death related to different MAIS scores. A score of 0 would denote no injuries, while scores like 8-10% and 5-50% pertain to injuries classified as lower severity levels, which do not correspond to the definitive fatal nature of a MAIS rating of 6.

8. A local agency expects a 14% reduction in right-angle crashes with a CMF of 0.86. If the AADT on the major street is 10,000 and on the minor street is 8,000, what improvement can they expect?

- A. A 10% reduction in right-angle crashes**
- B. A 14% reduction in right-angle crashes**
- C. A 20% reduction in right-angle crashes**
- D. A 25% increase in right-angle crashes**

To determine the expected improvement in right-angle crashes using the given data, start by understanding the context of the crash modification factor (CMF). A CMF of 0.86 indicates that with the implemented safety measures or changes, the expected right-angle crashes will be reduced to 86% of their current level. The local agency anticipates a 14% reduction in right-angle crashes in relation to the current rate. This means that they expect 14% fewer right-angle crashes to occur once safety improvements are made. Using the CMF concept, they have effectively assessed that the expected outcome aligns with their forecasts, showing that they understand the relationship between the current data and their safety strategies. With an average annual daily traffic (AADT) of 10,000 on the major street and 8,000 on the minor street, this suggests a significant frequency of traffic interactions at the intersection where right-angle crashes might occur. The expected 14% reduction is directly linked to their analysis of current crash rates and anticipated improvements. In this context, the choice indicating a 14% reduction directly reflects the agency's forecast and understanding of the effects of the CMF on crash rates, supporting their projected safety improvements as a practical and measured estimate based on historical

9. How is the 'human error' aspect addressed in road safety planning?

- A. By expecting complete driver compliance with laws
- B. Through the Safe System approach which acknowledges human limitations**
- C. By conducting more rigorous driver tests
- D. By enforcing longer driving hours without breaks

The 'human error' aspect in road safety planning is effectively addressed through the Safe System approach, which is designed to recognize and account for human limitations. This approach acknowledges that while humans can make mistakes, the overall system should be designed to minimize the consequences of those errors. The Safe System encompasses strategies such as designing safer roads, implementing better vehicle safety features, and developing comprehensive traffic management strategies that consider human behavior. By accepting that road users can err, the Safe System aims to create an environment where the risks associated with human error are significantly mitigated. In contrast, expecting complete driver compliance with laws does not factor in the reality that errors will occur, and merely enforcing stricter regulations or testing cannot fully account for the unpredictable nature of human behavior. Moreover, enforcing longer driving hours without breaks can actually increase the risk of driver fatigue and error, rather than reducing it. Therefore, the Safe System's holistic view is essential for improving road safety by addressing the human factor in an informed and effective manner.

10. What aspect of road safety can be addressed by urban planning?

- A. Only public transport systems
- B. Road layouts and traffic flow**
- C. Private vehicle usage
- D. Pedestrian behavior only

Urban planning plays a crucial role in enhancing road safety, particularly through the design of road layouts and traffic flow. By strategically planning the layout of streets, intersections, and pathways, urban planners can create environments that reduce the likelihood of accidents. For instance, well-designed road layouts can include features such as dedicated bike lanes, safe pedestrian crossings, and traffic calming measures, which collectively contribute to safer roads for all users. Effective traffic flow management is also essential; this includes optimizing signal timings and the arrangement of bike and vehicle lanes to minimize conflicts among different types of road users. Moreover, urban planning can dictate the location of schools, parks, and commercial areas, ensuring that they are easily accessible and properly integrated into the transportation network. All of these elements combined can significantly mitigate hazards and improve overall safety on the roads. While public transport systems, private vehicle usage, and pedestrian behavior are indeed important factors in road safety, they are more dependent on specific policies, behaviors, or external influences rather than being directly shaped through the foundational elements of urban design. Road layouts and traffic flow are primary considerations that can be effectively controlled through urban planning techniques, making them central to enhancing road safety.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://roadsafetyprofessional.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE