

Registered Phlebology Sonographer (RPhS) Certification Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Questions

SAMPLE

- 1. What is the typical closure time for superficial veins?**
 - A. 0.35 sec**
 - B. 0.5 sec**
 - C. 1 sec**
 - D. 1.5 sec**
- 2. Which of the following falls under moderate risk factors for VTE?**
 - A. Obesity**
 - B. Hip/leg fracture**
 - C. Chemotherapy**
 - D. Spinal cord injury**
- 3. Varicose veins greater than 3 mm over the thigh or calf are generally associated with:**
 - A. Normal vein pathways**
 - B. Accessory branches of the saphenous system**
 - C. Deep venous incompetence**
 - D. Superficial venous insufficiency**
- 4. In the context of calculating sensitivity, which elements are used in the numerator?**
 - A. True positives and false negatives**
 - B. True negatives and false positives**
 - C. True positives and true negatives**
 - D. False negatives and false positives**
- 5. Which of the following is an extrinsic factor affecting venous flow?**
 - A. Musculovenous pump**
 - B. Thoracic pressure**
 - C. Atmospheric pressure**
 - D. Venous contractions**

6. Lipodermatosclerosis is characterized by:

- A. Acute venous thrombosis**
- B. Chronic panniculitis with lipomembranous changes**
- C. Subcutaneous edema and inflammation**
- D. Saphenofemoral junction insufficiency**

7. What is the best approach for treating a symptomatic AVM that does not respond to conservative management?

- A. Immediate surgery**
- B. Embolization**
- C. Chemotherapy**
- D. Radiation therapy**

8. Where should the catheter tip be placed for a thermal ablation procedure, given the reflux data?

- A. At the saphenous junction**
- B. 2 cm distal to the junction**
- C. At the mid-thigh**
- D. 2 cm proximal to the junction**

9. Which of the following veins is not a part of the pelvic anatomy mentioned?

- A. Inferior iliac vein**
- B. Pudendal vein**
- C. Hemorrhoidal vein**
- D. Common femoral vein**

10. Which veins are noted for lacking valves?

- A. Femoral veins**
- B. Common iliac veins**
- C. Popliteal veins**
- D. Superficial veins**

Answers

SAMPLE

- 1. B**
- 2. C**
- 3. B**
- 4. A**
- 5. C**
- 6. B**
- 7. B**
- 8. B**
- 9. A**
- 10. B**

SAMPLE

Explanations

SAMPLE

1. What is the typical closure time for superficial veins?

- A. 0.35 sec
- B. 0.5 sec**
- C. 1 sec
- D. 1.5 sec

The typical closure time for superficial veins is around 0.5 seconds. This measurement reflects the normal physiological response of the vein tissue when subjected to a closure mechanism, such as when performing a venous ultrasound study or assessing for venous insufficiency. In a healthy vascular system, the return to baseline after a transient event typically occurs within this timeframe, allowing healthcare professionals to determine if there is normal or abnormal venous function. Shorter or longer closure times could indicate various conditions, including valvular incompetence or other vascular pathology. Understanding the typical closure time is crucial in phlebology for diagnosing and treating venous disorders effectively.

2. Which of the following falls under moderate risk factors for VTE?

- A. Obesity
- B. Hip/leg fracture
- C. Chemotherapy**
- D. Spinal cord injury

Moderate risk factors for venous thromboembolism (VTE) include conditions or factors that may increase the likelihood of developing blood clots, but do not carry as significant a risk as high-risk factors. Chemotherapy is categorized as a moderate risk factor because cancer treatments can lead to multiple physiological changes that increase coagulation and reduce blood flow, contributing to an elevated risk of VTE. Patients undergoing chemotherapy often experience changes such as damage to blood vessel integrity, an increase in pro-coagulant factors, and decreased venous return due to immobility or other comorbid conditions. These effects make it essential to monitor and possibly implement preventive measures in these patients to reduce the risk of thrombotic events. Compared to other options, while conditions like obesity may potentially elevate risk, they are generally viewed as a lower risk compared to the active pathophysiological processes involved with chemotherapy. Additionally, hip or leg fractures and spinal cord injuries tend to be classified as high-risk factors because they entail immobilization and physical trauma, which significantly increases VTE risk.

3. Varicose veins greater than 3 mm over the thigh or calf are generally associated with:

- A. Normal vein pathways**
- B. Accessory branches of the saphenous system**
- C. Deep venous incompetence**
- D. Superficial venous insufficiency**

The presence of varicose veins greater than 3 mm, especially over the thigh or calf, is commonly associated with accessory branches of the saphenous system. These accessory veins can contribute to the development of varicosities when they become incompetent, leading to increased venous pressure and subsequent varicose vein formation. Accessory branches of the saphenous system often exist to help drain blood from the lower extremities and can become dilated and tortuous when the primary drainage pathways are compromised. This is particularly true in cases where the saphenous veins experience valvular incompetence. The development of varicose veins in this context indicates a disruption in normal venous return, where accessory branches may take on more workload to compensate. Understanding this association is crucial for a phlebology sonographer, as it helps inform the diagnosis and potential treatment methods for managing venous insufficiency and its complications.

4. In the context of calculating sensitivity, which elements are used in the numerator?

- A. True positives and false negatives**
- B. True negatives and false positives**
- C. True positives and true negatives**
- D. False negatives and false positives**

Sensitivity, also known as the true positive rate, is a measure used to evaluate the performance of a diagnostic test. It quantifies the ability of the test to correctly identify individuals who have a particular disease or condition. The formula for sensitivity is as follows: $\text{Sensitivity} = \text{True Positives} / (\text{True Positives} + \text{False Negatives})$ In this context, the numerator specifically consists of true positives, which are the cases that the test correctly identifies as having the condition. This aspect is crucial because it directly reflects the test's capacity to detect the disease effectively. False negatives, which are cases where the test fails to identify the condition despite its presence, are included in the denominator because they represent instances where the test did not perform correctly. Therefore, true positives are critical for understanding how well the test can identify the condition for those who truly have it. This understanding is foundational for interpreting diagnostic tests in phlebology and other medical fields, emphasizing the importance of a high sensitivity in tests designed to detect medical conditions accurately.

5. Which of the following is an extrinsic factor affecting venous flow?

- A. Musculovenous pump**
- B. Thoracic pressure**
- C. Atmospheric pressure**
- D. Venous contractions**

Atmospheric pressure is considered an extrinsic factor affecting venous flow because it refers to the pressure exerted by the weight of the atmosphere around us. This external force can influence venous return by altering the pressure gradients within the venous system. When atmospheric pressure changes, it can have an impact on the pressure within the thoracic cavity, thereby affecting the overall venous return to the heart. Other factors could include the way the body is positioned or the state of physical activity, as these changes in environment and activity level directly affect venous flow. However, atmospheric pressure is a consistent external influence that operates independently of the body's physiological mechanisms. The other options, such as the musculovenous pump, thoracic pressure, and venous contractions, are more related to intrinsic mechanisms within the body. The musculovenous pump pertains to the action of muscles surrounding the veins, thoracic pressure changes are related to respiration, and venous contractions refer to the muscle contractions within the venous structure, all of which are intrinsic factors that facilitate venous return.

6. Lipodermatosclerosis is characterized by:

- A. Acute venous thrombosis**
- B. Chronic panniculitis with lipomembranous changes**
- C. Subcutaneous edema and inflammation**
- D. Saphenofemoral junction insufficiency**

Lipodermatosclerosis is a condition that represents a severe form of chronic venous insufficiency and is primarily characterized by its impact on the subcutaneous tissue. The hallmark of lipodermatosclerosis is the chronic panniculitis, which leads to changes in the fat layer beneath the skin. This condition manifests as thickening and fibrosis of the dermis and subcutaneous tissue, along with alterations in adipose tissue that are referred to as lipomembranous changes. These changes occur due to prolonged venous hypertension, which leads to inflammation and subsequent fibrotic changes in the skin and subcutaneous tissues. The skin overlying affected areas typically appears indurated, reddened, or can develop a characteristic "champagne bottle" appearance, often around the ankles. Understanding the underlying pathology of lipodermatosclerosis is important for diagnosing and managing chronic venous disease. Factors such as acute venous thrombosis, subcutaneous edema, and inflammation, or saphenofemoral junction insufficiency do play roles in chronic venous insufficiency but do not specifically define the unique features of lipodermatosclerosis. The recognition of chronic panniculitis with lipomembranous changes allows for a more precise understanding and approach for

7. What is the best approach for treating a symptomatic AVM that does not respond to conservative management?

- A. Immediate surgery**
- B. Embolization**
- C. Chemotherapy**
- D. Radiation therapy**

Embolization is often the favored approach for treating a symptomatic arteriovenous malformation (AVM) that does not respond to conservative management. This minimally invasive procedure involves intentionally blocking or occluding the blood vessels that supply the AVM, which can reduce its size, alleviate symptoms, and prevent complications related to increased blood flow. By using embolic agents, the interventional radiologist can effectively reduce the pressure in the AVM and decrease the risk of hemorrhage. This makes embolization especially valuable in cases where it serves as a pre-operative measure or a definitive treatment for AVMs, leading to a more manageable condition for the patient. This technique's success hinges on its ability to specifically target the AVM, which is crucial given the potential risks posed by more radical treatments. Immediate surgery, while effective in some cases, carries higher risks and may not always be necessary if embolization can achieve the desired results. Chemotherapy and radiation therapy are generally not primary interventions for AVMs, as they do not directly address the vascular nature of the malformation.

8. Where should the catheter tip be placed for a thermal ablation procedure, given the reflux data?

- A. At the saphenous junction**
- B. 2 cm distal to the junction**
- C. At the mid-thigh**
- D. 2 cm proximal to the junction**

In a thermal ablation procedure, it is critical to properly position the catheter tip to ensure effective treatment of the targeted vein while minimizing complications. The correct placement of the catheter tip, which is two centimeters distal to the saphenous junction, allows for the optimal ablation of the vein segment that may be refluxing. Positioning the catheter tip at this location takes into account the reflux data, as it ensures that the area of the vein that is contributing to the reflux is adequately treated. By placing the catheter just distal to the junction, the ablation energy can effectively disrupt the vein wall and close off the vein, which is ideal for managing conditions such as varicose veins. Additionally, this placement helps to prevent any collateral damage to adjacent structures and allows for proper thermal distribution along the vein length, further enhancing the efficacy of the procedure. Proper catheter placement into the specified anatomical landmarks is essential for achieving the desired therapeutic outcomes in venous ablation treatments.

9. Which of the following veins is not a part of the pelvic anatomy mentioned?

- A. Inferior iliac vein**
- B. Pudendal vein**
- C. Hemorrhoidal vein**
- D. Common femoral vein**

The inferior iliac vein is not typically recognized as a distinct anatomical structure within the pelvic anatomy. Instead, the more common terms related to the iliac veins are the internal iliac vein and the external iliac vein, which drain blood from the pelvis and lower limbs, respectively. The inferior iliac vein may sometimes be referred to in a broader sense, but it does not denote a widely accepted anatomical vein within standard pelvic anatomy references. On the other hand, the pudendal vein is known for draining the structures of the perineum and is significant in the anatomy of the pelvis. The hemorrhoidal vein pertains to the venous drainage associated with the rectal area, and variations of this vein are often discussed in relation to conditions such as hemorrhoids. The common femoral vein is involved in the venous return from the leg and does have anatomical significance that extends into the pelvic region. Thus, the distinction of the inferior iliac vein makes it the outlier in this context.

10. Which veins are noted for lacking valves?

- A. Femoral veins**
- B. Common iliac veins**
- C. Popliteal veins**
- D. Superficial veins**

The common iliac veins are notably lacking valves, which is crucial for understanding venous anatomy and physiology. Valves in veins serve to prevent backflow and assist with venous return, particularly in the extremities where blood faces gravity. However, the common iliac veins, which are located deeper within the body, do not contain valves. This anatomical feature is significant as it reflects their role in draining blood from the lower limbs and pelvic region directly into the inferior vena cava without the resistance or potential for backflow that valves typically manage in other vein types. In contrast, many veins in the body do contain valves, especially those in the lower limbs, to facilitate effective blood return against gravity. This includes the femoral veins and popliteal veins, which rely on valves to support venous return during physical activities. Superficial veins, while also containing valves, serve primarily in the drainage of the skin and subcutaneous tissues and communicate with deep veins, which may be more susceptible to conditions like varicose veins when valve function is compromised. Hence, recognizing the absence of valves in the common iliac veins underscores an important aspect of how blood circulates back to the heart from the lower body.