

Radiation Safety Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain accurate, complete, and timely information about this product from reliable sources.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	5
Answers	8
Explanations	10
Next Steps	16

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning. Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly, adapt the tips above to fit your pace and learning style. You've got this!

Questions

SAMPLE

- 1. Which radioactive isotope is used as a check source in RADIAC instruments?**
 - A. Uranium-235**
 - B. Plutonium-239**
 - C. Thorium-232**
 - D. Radium-226**

- 2. Which element has an atomic number of eighty-eight (88) according to the Periodic Table of Elements?**
 - A. Radon**
 - B. Radium**
 - C. Ruthenium**
 - D. Radii**

- 3. Which agency oversees the regulation of radioactive materials?**
 - A. FDA**
 - B. EPA**
 - C. NRC**
 - D. OSHA**

- 4. What emission is primarily associated with the M43A1 detector's americium source?**
 - A. Neutron radiation**
 - B. Alpha particles**
 - C. Beta particles**
 - D. Gamma rays**

- 5. Which type of dosimeter typically provides no real-time dose information?**
 - A. Film badge**
 - B. Electronic dosimeter**
 - C. Self-reading dosimeter**
 - D. Optically Stimulated Luminescent Dosimeter**

6. Which of the following particles is not charged?

- A. Alpha particle**
- B. Beta particle**
- C. Gamma ray**
- D. Ion**

7. What is the total activity of thorium-232 in the thermal receiver with NSN 1240-01-074-8947?

- A. 1.23E-3**
- B. 5.55E-3**
- C. 5.55E+3**
- D. 2.98E+2**

8. Which of the following is believed to be beneficial according to the hormesis effect?

- A. High doses of radiation**
- B. Low-level exposures to ionizing radiation**
- C. Complete avoidance of radiation**
- D. Exposure only to non-ionizing radiation**

9. What charge do gamma rays have?

- A. Positive charge**
- B. Negative charge**
- C. No charge at all**
- D. Neutral and positive**

10. Which particle carries a -1 (negative one) charge?

- A. Alpha particle**
- B. Neutron**
- C. Proton**
- D. Beta particle**

Answers

SAMPLE

1. C
2. B
3. C
4. B
5. A
6. C
7. B
8. B
9. C
10. D

SAMPLE

Explanations

SAMPLE

1. Which radioactive isotope is used as a check source in RADIAC instruments?

- A. Uranium-235**
- B. Plutonium-239**
- C. Thorium-232**
- D. Radium-226**

The choice of Thorium-232 as the radioactive isotope used as a check source in RADIAC instruments is based on its properties and suitability for calibration and verification purposes in radiation detection devices. Thorium-232 is a naturally occurring isotope that is relatively stable and emits low-energy radiation, making it an appropriate choice for internal checks within these instruments. RADIAC instruments, which are used to measure and monitor radiation levels, require check sources that have predictable radiation outputs for accurate calibration. Thorium-232 has a long half-life, contributing to its reliability over time without significant decay variations, ensuring consistent performance for routine checks. It's important to utilize isotopes that emit radiation within the detectable range of the instrument, and Thorium-232 meets this requirement effectively. Its use as a check source assists in verifying the accuracy and functionality of RADIAC instruments, ensuring that they provide reliable measurements of radiation levels in the environment.

2. Which element has an atomic number of eighty-eight (88) according to the Periodic Table of Elements?

- A. Radon**
- B. Radium**
- C. Ruthenium**
- D. Radii**

The element with an atomic number of eighty-eight (88) is Radium. In the context of the periodic table, the atomic number indicates the number of protons found in the nucleus of an atom of that element. Radium is classified as an alkaline earth metal, and it is known for its radioactive properties. Discovered by Marie Curie and Pierre Curie in 1898, Radium is particularly noteworthy for its historical use in luminescent paints and its medical applications, especially in treatments for cancer. Understanding the significance of atomic numbers is crucial for identifying elements correctly on the periodic table. Each element is assigned a unique atomic number, which allows scientists and chemists to organize and classify the elements based on their properties and behavior. Radon, Ruthenium, and the term "Radii" do not correspond to the atomic number 88; Radon has an atomic number of 86, Ruthenium is 44, and "Radii" does not refer to an actual element.

3. Which agency oversees the regulation of radioactive materials?

- A. FDA
- B. EPA
- C. NRC**
- D. OSHA

The agency that oversees the regulation of radioactive materials is the Nuclear Regulatory Commission (NRC). The NRC is responsible for ensuring the safe use of radioactive materials for civilian purposes. This includes establishing regulatory requirements for nuclear power plants, medical applications, nuclear waste management, and other activities involving radioactive materials. The NRC's mandate encompasses the licensing and oversight of entities that handle radioactive materials, ensuring compliance with safety standards to protect public health and the environment. The agency conducts inspections, monitors compliance, and enforces laws governing radiation safety, making it a central authority in the regulation of activities related to radioactivity. The other agencies mentioned, such as the FDA (Food and Drug Administration), EPA (Environmental Protection Agency), and OSHA (Occupational Safety and Health Administration), have distinct roles in health and environmental protection but do not solely regulate radioactive materials. The FDA focuses on the safety of food and drugs, the EPA works on environmental protection including pollution, and OSHA is concerned with workplace safety standards. Each of these agencies may interact with radioactive materials within their jurisdiction but does not specifically oversee their regulation like the NRC does.

4. What emission is primarily associated with the M43A1 detector's americium source?

- A. Neutron radiation
- B. Alpha particles**
- C. Beta particles
- D. Gamma rays

The M43A1 detector is specifically designed to use americium-241 as its radioactive source. Americium-241 primarily emits alpha particles during its decay process. Alpha particles are relatively heavy and carry a positive charge, which means they have limited penetration power; they can be stopped by a sheet of paper or even a few centimeters of air. However, they can be quite damaging to biological tissues if alpha-emitting materials are ingested or inhaled, due to their high energy and mass. Understanding the nature of the emissions from a radioactive source is crucial in radiation safety, as it dictates the protective measures that must be taken when handling or working near such materials. In this case, recognizing that the M43A1 detector relies on alpha particle emission highlights the need for specific safety protocols when using devices that utilize americium, especially regarding containment and personal protective equipment, to prevent potential inhalation or ingestion of the radioactive material.

5. Which type of dosimeter typically provides no real-time dose information?

- A. Film badge**
- B. Electronic dosimeter**
- C. Self-reading dosimeter**
- D. Optically Stimulated Luminescent Dosimeter**

A film badge is a type of dosimeter that primarily uses photographic film to measure radiation exposure. The way it works involves the film being placed in a holder that is worn by the individual. When radiation interacts with the film, it causes changes that can only be visualized and quantified after developing the film, much like traditional photography. This means that it does not provide immediate, real-time feedback about the radiation dose received. Instead, a film badge must be sent to a laboratory for processing and assessment which can take time, ranging from days to weeks, before the results are available. This characteristic distinguishes the film badge from other types of dosimeters, such as electronic dosimeters or self-reading dosimeters, which provide immediate readings in real-time or shortly after exposure. Optically Stimulated Luminescent Dosimeters (OSL) also require processing but incorporate a different mechanism. However, they can provide detailed information about the dose after the initial reading, which can sometimes be quicker than film badges.

6. Which of the following particles is not charged?

- A. Alpha particle**
- B. Beta particle**
- C. Gamma ray**
- D. Ion**

Gamma rays are not charged particles, which is the reason they are the correct answer in this context. Unlike alpha and beta particles, which are composed of charged fundamental particles, gamma rays consist of electromagnetic radiation. Specifically, gamma rays are high-energy photons, which do not carry any electric charge. Alpha particles are positively charged as they consist of two protons and two neutrons. Beta particles can be either negatively charged (electrons) or positively charged (positrons). Ions are atoms or molecules that have gained or lost one or more electrons and thus possess a net electric charge. By understanding that gamma rays are electromagnetic waves rather than matter composed of charged particles, it becomes clear why they are categorized as uncharged.

7. What is the total activity of thorium-232 in the thermal receiver with NSN 1240-01-074-8947?

- A. 1.23E-3
- B. 5.55E-3**
- C. 5.55E+3
- D. 2.98E+2

The total activity of thorium-232 in the thermal receiver referred to by its NSN can be calculated based on the decay properties and specific activity of thorium-232, which is a naturally occurring radioactive isotope. Thorium-232 has a specific activity of about 4.08×10^{-12} Ci/gram, and its half-life is approximately 14 billion years, which makes it one of the most stable isotopes. In this context, the chosen answer indicates an appropriate value for the activity level, reflecting the necessary unit conversions and calculations that would be applied based on the mass of thorium-232 present in the thermal receiver. Answering with 5.55E-3 suggests an understanding of both the physical properties of thorium-232 and the context in which it is measured, such as the correct handling and reporting of radioactive materials to ensure safe practices in radiation safety operations. Understanding radioactive decay and the quantity of the isotope present allows for the determination of its activity in becquerels (Bq) or curies (Ci), critical for compliance with safety regulations and ensuring the monitoring of radiation exposure. The choice of 5.55E-3 reflects a moderate level of activity that aligns with typical values encountered in similar

8. Which of the following is believed to be beneficial according to the hormesis effect?

- A. High doses of radiation
- B. Low-level exposures to ionizing radiation**
- C. Complete avoidance of radiation
- D. Exposure only to non-ionizing radiation

The hormesis effect refers to the phenomenon where low doses of a potentially harmful agent, such as ionizing radiation, can have beneficial effects on health or biological processes. This concept suggests that exposure to low levels of radiation may stimulate adaptive biological responses that can enhance cellular repair mechanisms, immune function, and overall health, counteracting the potential negative effects of higher doses. In the context of radiation safety, the belief in hormesis stands on the premise that while high doses of radiation are known to be harmful, low-level exposures can potentially trigger positive effects. This is contrary to traditional risk assessment models that assume a linear dose-response relationship, where any exposure is harmful. Therefore, the idea of low-level exposures promoting beneficial biological effects supports the option that is seen as beneficial according to the hormesis effect. The other options do not align with the hormesis concept. High doses of radiation are definitively harmful, complete avoidance of radiation does not leverage any potential benefits and focuses only on risk, and exposure to only non-ionizing radiation does not address the specific context of ionizing radiation where hormesis is often discussed.

9. What charge do gamma rays have?

- A. Positive charge**
- B. Negative charge**
- C. No charge at all**
- D. Neutral and positive**

Gamma rays are a form of electromagnetic radiation, similar to visible light but with much higher energy. One of the key characteristics of electromagnetic radiation is that it is composed of photons, which are massless particles that carry energy. Importantly, photons do not have any electric charge; they can travel through a vacuum and do not interact with electric or magnetic fields in the same way charged particles do. Since gamma rays are essentially photons, they inherently possess no charge at all. This property distinguishes them from other forms of radiation, such as alpha and beta particles, which are charged. Consequently, the correct choice is that gamma rays have no charge at all. Understanding this fundamental characteristic of gamma rays is essential for comprehending their behavior, interactions with matter, and their implications in radiation safety.

10. Which particle carries a -1 (negative one) charge?

- A. Alpha particle**
- B. Neutron**
- C. Proton**
- D. Beta particle**

The particle that carries a -1 charge is the beta particle. Beta particles are high-energy, high-speed electrons or positrons emitted during the radioactive decay of an atomic nucleus. In their most common form as electrons, beta particles have a negative charge of -1, which is a crucial characteristic that distinguishes them from other particles.

Alpha particles, on the other hand, consist of two protons and two neutrons (essentially a helium nucleus) and carry a positive charge of +2. Neutrons are neutral particles and have no charge at all, while protons possess a positive charge of +1. Understanding the unique charge properties of these particles is fundamental in radiation safety and nuclear physics, as it influences their behavior, interaction with matter, and the effects they have on living tissue.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://radiationsafety.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE