QMED Basic Refrigeration Practice Test (Sample)

Study Guide

Everything you need from our exam experts!

Copyright © 2025 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

Questions

- 1. What is the result of heat absorbed during a phase change?
 - A. A change in temperature
 - B. No change in temperature
 - C. A change in pressure
 - D. A change in volume
- 2. What is the state of refrigerant leaving the condenser in a refrigeration system?
 - A. Sub cooled, Low temp, Low pressure
 - B. Super heated, High temp, High pressure
 - C. Sub cooled, Moderate temp, High pressure
 - D. Saturated vapor, Moderate temp, Low pressure
- 3. In refrigeration systems, what does a "TXV" refer to?
 - A. Thermostatic Expansion Valve
 - **B.** Thermal Exchange Valve
 - C. Temperature Control Valve
 - **D. Toxicity Expansion Valve**
- 4. What is the significance of the saturation temperature of a refrigerant?
 - A. It determines the efficiency of the compressor
 - B. It is the temperature at which a refrigerant changes phase from liquid to vapor or vice versa
 - C. It reflects the pressure of the refrigerant
 - D. It indicates the amount of refrigerant in the system
- 5. What is the benefit of sub cooling the condenser in a refrigeration system?
 - A. Increases the temperature
 - B. Prevents liquid refrigerant from vaporizing
 - C. Reduces energy consumption
 - D. Promotes evaporation

- 6. Why is the proper disposal of old refrigerants important?
 - A. To improve system efficiency
 - B. To prevent environmental pollution
 - C. To enhance cooling performance
 - D. To reduce energy consumption
- 7. How often should refrigerant pressures be checked in a working system?
 - A. Only during installation
 - **B.** Every month
 - C. Regularly, typically during routine maintenance
 - D. Once a year during seasonal changes
- 8. Which method of heat transfer involves the direct transfer of thermal energy between materials in contact?
 - A. Conduction
 - **B.** Convection
 - C. Radiation
 - **D.** Insulation
- 9. What happens to refrigerant during hot gas defrosting?
 - A. It condenses in the evaporator
 - B. It bypasses the condenser
 - C. It evaporates prematurely
 - D. It cools down significantly
- 10. What type of heat transfer occurs in the evaporator?
 - A. Conduction heat transfer
 - **B.** Convection heat transfer
 - C. Latent heat transfer
 - D. Radiant heat transfer

Answers

- 1. B 2. C 3. A 4. B 5. B 6. B 7. C 8. A 9. B 10. C

Explanations

1. What is the result of heat absorbed during a phase change?

- A. A change in temperature
- **B.** No change in temperature
- C. A change in pressure
- D. A change in volume

During a phase change, the heat absorbed by a substance goes into altering the state of the material rather than changing its temperature. This process can be visualized in typical transitions, such as melting (solid to liquid) or boiling (liquid to gas). For example, when ice melts into water, heat is supplied to the ice, allowing the molecules to break free from their fixed positions, but the temperature of the ice-water mixture remains constant until all the ice has melted. Similarly, when water boils, additional heat is absorbed to convert liquid water into vapor without raising the temperature of the water. This phenomenon occurs because the energy is used to overcome the intermolecular forces holding the molecules in their respective states instead of increasing kinetic energy, which would raise the temperature. Therefore, during a phase change, the result of heat absorption is characterized by no change in temperature.

2. What is the state of refrigerant leaving the condenser in a refrigeration system?

- A. Sub cooled, Low temp, Low pressure
- B. Super heated, High temp, High pressure
- C. Sub cooled, Moderate temp, High pressure
- D. Saturated vapor, Moderate temp, Low pressure

When the refrigerant leaves the condenser in a refrigeration system, it is typically in a subcooled state, meaning the temperature of the refrigerant is lower than its saturation temperature at the given pressure. This state ensures that the refrigerant is completely condensed into a liquid phase, and additionally, it is under high pressure, which is necessary for the subsequent processes in the refrigeration cycle. Being in a subcooled condition allows the refrigerant to absorb additional heat from the surroundings without transitioning back into a vapor, which improves system efficiency and ensures that the refrigerant will remain in liquid form as it travels to the expansion device. The moderate temperature indicates that it is cooler compared to the high temperature that would be present if it were only saturated or superheated. This state is crucial because a liquid refrigerant that is fully condensed and subcooled reduces the chances of vapor entering the expansion valve and ensures effective cooling in the evaporator, where the refrigerant will absorb heat and evaporate into a gas once it passes through the expansion device.

3. In refrigeration systems, what does a "TXV" refer to?

- **A. Thermostatic Expansion Valve**
- **B.** Thermal Exchange Valve
- C. Temperature Control Valve
- **D. Toxicity Expansion Valve**

The term "TXV" stands for Thermostatic Expansion Valve, which is a critical component in many refrigeration and air conditioning systems. The primary function of a TXV is to regulate the flow of refrigerant into the evaporator coil, ensuring optimal operation and efficiency. The TXV achieves this by responding to the temperature of the refrigerant as it leaves the evaporator. It adjusts the amount of refrigerant that enters the evaporator based on the cooling demand of the system, which helps maintain the correct pressure and temperature conditions. This modulation prevents both underfeeding and overfeeding of the evaporator, contributing to the overall efficiency and performance of the refrigeration system. In contrast, the other options do not accurately describe the function or purpose of a TXV. For instance, a Thermal Exchange Valve would imply a component involved in transferring heat, but it does not specifically address refrigerant flow control. A Temperature Control Valve typically refers to devices that manage fluid temperature rather than the refrigerant flow in the cooling process, while a Toxicity Expansion Valve suggests a valve related to hazardous substances, which is not relevant in the context of standard refrigeration systems.

4. What is the significance of the saturation temperature of a refrigerant?

- A. It determines the efficiency of the compressor
- B. It is the temperature at which a refrigerant changes phase from liquid to vapor or vice versa
- C. It reflects the pressure of the refrigerant
- D. It indicates the amount of refrigerant in the system

The saturation temperature of a refrigerant is indeed the temperature at which it transitions between liquid and vapor phases. This phase change is crucial in the refrigeration cycle, as it is during this process that the refrigerant absorbs or releases heat. When a refrigerant reaches its saturation temperature, it begins to boil and vaporize (changing from a liquid to a gas) or condense (changing from a gas to a liquid), which allows for effective heat transfer within the system. Understanding the saturation temperature helps technicians to manage and optimize system performance, as it directly affects other variables such as pressure and capacity. It plays a vital role in determining the conditions under which the refrigerant operates and interacts with the components of the refrigeration system, such as evaporators and condensers. This knowledge is essential for ensuring efficient operation and maintaining the desired temperatures in refrigeration applications.

5. What is the benefit of sub cooling the condenser in a refrigeration system?

- A. Increases the temperature
- B. Prevents liquid refrigerant from vaporizing
- C. Reduces energy consumption
- **D. Promotes evaporation**

Subcooling the condenser is crucial for improving the efficiency and performance of a refrigeration system. When the refrigerant is subcooled, it remains in a liquid state below its saturation temperature at a given pressure. This prevents liquid refrigerant from vaporizing prematurely as it moves through the system. By ensuring that only liquid refrigerant enters the expansion device, you can maximize the system's efficiency. Specifically, this process helps ensure that the refrigerant does not undergo phase changes until it reaches the evaporator, where it is intended to evaporate. When liquid refrigerant enters the evaporator in a subcooled state, it absorbs more heat and vaporizes effectively, leading to better cooling performance. Additionally, maintaining a liquid state means there's less risk of vapor being drawn into the compressor, which could lead to efficiency losses or even mechanical damage. Therefore, the primary benefit of subcooling the condenser is to maintain the integrity of the refrigerant in its liquid state, optimizing the refrigeration cycle and enhancing overall system efficiency.

6. Why is the proper disposal of old refrigerants important?

- A. To improve system efficiency
- B. To prevent environmental pollution
- C. To enhance cooling performance
- D. To reduce energy consumption

The proper disposal of old refrigerants is crucial primarily to prevent environmental pollution. Many refrigerants contain substances that can be harmful to the atmosphere and contribute to ozone layer depletion or global warming if they are released into the environment. Regulations often mandate that technicians follow specific protocols for recovering and recycling refrigerants to ensure that these potentially harmful substances do not escape into the air. In addition to the environmental implications, adhering to proper disposal procedures helps maintain a safer working environment for technicians and prevents public health hazards associated with the mishandling of these chemicals. Proper disposal aligns with environmental conservation efforts and regulatory compliance, making it a key aspect of responsible refrigerant management.

- 7. How often should refrigerant pressures be checked in a working system?
 - A. Only during installation
 - **B.** Every month
 - C. Regularly, typically during routine maintenance
 - D. Once a year during seasonal changes

Checking refrigerant pressures regularly, typically during routine maintenance, is critical for maintaining the efficiency and reliability of a refrigeration system. Regular monitoring allows technicians to identify any abnormal pressure readings that may indicate leaks, blockages, or other issues that could affect system performance. By assessing refrigerant pressures during routine maintenance, potential problems can be caught early before they escalate into more significant issues, helping to ensure the system operates at its optimal capacity. This proactive approach not only contributes to the longevity of the equipment but also enhances energy efficiency and reduces operating costs. Other options suggest less frequent or situational checks. For example, only checking the pressures during installation does not account for the normal wear and tear that systems undergo over time. Monthly checks may be excessive for many systems unless specific operational conditions warrant it, and annual checks may miss critical fluctuations that could arise in between seasons. Therefore, routine maintenance checks are the most effective approach to ensure systems remain in optimal working condition.

- 8. Which method of heat transfer involves the direct transfer of thermal energy between materials in contact?
 - A. Conduction
 - **B.** Convection
 - C. Radiation
 - **D.** Insulation

The method of heat transfer that involves the direct transfer of thermal energy between materials in contact is conduction. This process occurs when two objects at different temperatures touch each other, allowing heat to flow from the hotter object to the cooler one until thermal equilibrium is reached. In conduction, the molecules in the warmer material vibrate more rapidly and collide with adjacent molecules in the cooler material, transferring energy through direct contact. This is commonly observed in solids, especially metals, where the tightly packed atoms can efficiently transfer kinetic energy. Understanding conduction is crucial in refrigeration, as optimizing material choices and contact surfaces can significantly affect the efficiency of heat exchange processes in refrigeration systems.

9. What happens to refrigerant during hot gas defrosting?

- A. It condenses in the evaporator
- B. It bypasses the condenser
- C. It evaporates prematurely
- D. It cools down significantly

During hot gas defrosting, the refrigerant is directed to bypass the condenser as it moves from the compressor back to the evaporator. This process involves using hot refrigerant gas to melt ice or frost build-up on the evaporator coils. By bypassing the condenser, the hot gas retains its temperature and effectively warms up the evaporator, facilitating the defrosting process. By utilizing the hot gas directly, the moisture that has accumulated as frost is melted away much more efficiently. This method helps to restore the evaporator's heat exchange capability, ensuring that the refrigeration system operates effectively once the defrost cycle is complete.

10. What type of heat transfer occurs in the evaporator?

- A. Conduction heat transfer
- B. Convection heat transfer
- C. Latent heat transfer
- D. Radiant heat transfer

In the evaporator, latent heat transfer occurs as the refrigerant absorbs heat from the surrounding environment, which causes the refrigerant to change state from a liquid to a vapor. This process is essential to the operation of refrigeration systems, as it allows the refrigerant to cool the air or fluid that passes over or through the evaporator. Latent heat transfer is specifically concerned with the heat energy required for a substance to change its state without a change in temperature. In the case of the evaporator, the refrigerant enters in a low-pressure liquid form, absorbs heat, and evaporates into a gas. This heat absorption is what achieves the cooling effect necessary in refrigeration cycles. Other types of heat transfer, while important in various contexts, do not accurately describe the primary mechanism at work within the evaporator. Conduction involves heat transfer through direct contact, convection refers to heat transfer through fluid motion, and radiant transfer involves energy transfer through electromagnetic waves. These concepts may play a role in different stages or components of a refrigeration system, but they do not characterize the main action occurring in the evaporator like latent heat transfer does.