

Qlik Sense Data Architect Certification Practice Exam (Sample)

Study Guide

Everything you need from our exam experts!

This is a sample study guide. To access the full version with hundreds of questions,

Copyright © 2026 by Examzify - A Kaluba Technologies Inc. product.

ALL RIGHTS RESERVED.

No part of this book may be reproduced or transferred in any form or by any means, graphic, electronic, or mechanical, including photocopying, recording, web distribution, taping, or by any information storage retrieval system, without the written permission of the author.

Notice: Examzify makes every reasonable effort to obtain from reliable sources accurate, complete, and timely information about this product.

SAMPLE

Table of Contents

Copyright	1
Table of Contents	2
Introduction	3
How to Use This Guide	4
Questions	6
Answers	9
Explanations	11
Next Steps	17

SAMPLE

Introduction

Preparing for a certification exam can feel overwhelming, but with the right tools, it becomes an opportunity to build confidence, sharpen your skills, and move one step closer to your goals. At Examzify, we believe that effective exam preparation isn't just about memorization, it's about understanding the material, identifying knowledge gaps, and building the test-taking strategies that lead to success.

This guide was designed to help you do exactly that.

Whether you're preparing for a licensing exam, professional certification, or entry-level qualification, this book offers structured practice to reinforce key concepts. You'll find a wide range of multiple-choice questions, each followed by clear explanations to help you understand not just the right answer, but why it's correct.

The content in this guide is based on real-world exam objectives and aligned with the types of questions and topics commonly found on official tests. It's ideal for learners who want to:

- Practice answering questions under realistic conditions,
- Improve accuracy and speed,
- Review explanations to strengthen weak areas, and
- Approach the exam with greater confidence.

We recommend using this book not as a stand-alone study tool, but alongside other resources like flashcards, textbooks, or hands-on training. For best results, we recommend working through each question, reflecting on the explanation provided, and revisiting the topics that challenge you most.

Remember: successful test preparation isn't about getting every question right the first time, it's about learning from your mistakes and improving over time. Stay focused, trust the process, and know that every page you turn brings you closer to success.

Let's begin.

How to Use This Guide

This guide is designed to help you study more effectively and approach your exam with confidence. Whether you're reviewing for the first time or doing a final refresh, here's how to get the most out of your Examzify study guide:

1. Start with a Diagnostic Review

Skim through the questions to get a sense of what you know and what you need to focus on. Don't worry about getting everything right, your goal is to identify knowledge gaps early.

2. Study in Short, Focused Sessions

Break your study time into manageable blocks (e.g. 30 - 45 minutes). Review a handful of questions, reflect on the explanations, and take breaks to retain information better.

3. Learn from the Explanations

After answering a question, always read the explanation, even if you got it right. It reinforces key points, corrects misunderstandings, and teaches subtle distinctions between similar answers.

4. Track Your Progress

Use bookmarks or notes (if reading digitally) to mark difficult questions. Revisit these regularly and track improvements over time.

5. Simulate the Real Exam

Once you're comfortable, try taking a full set of questions without pausing. Set a timer and simulate test-day conditions to build confidence and time management skills.

6. Repeat and Review

Don't just study once, repetition builds retention. Re-attempt questions after a few days and revisit explanations to reinforce learning.

7. Use Other Tools

Pair this guide with other Examzify tools like flashcards, and digital practice tests to strengthen your preparation across formats.

There's no single right way to study, but consistent, thoughtful effort always wins. Use this guide flexibly — adapt the tips above to fit your pace and learning style. You've got this!

SAMPLE

Questions

SAMPLE

- 1. Which chart combines both absolute and relative values?**
 - A. Bar chart**
 - B. Combo chart**
 - C. Line chart**
 - D. Pie chart**

- 2. In string manipulation, which function is used to repeats an input string?**
 - A. Left fcn**
 - B. Repeat fcn**
 - C. TextBetween fcn**
 - D. Qualify fcn**

- 3. What type of comparison does the WildMatch function support?**
 - A. Case sensitive comparison**
 - B. Numerical comparison only**
 - C. Case insensitive comparison with wildcards**
 - D. Exact match comparison**

- 4. Which process is involved in creating composite keys in ETL?**
 - A. Extract phase**
 - B. Transform phase**
 - C. Load phase**
 - D. Data preparation phase**

- 5. What does the Floor function do when used in Qlik Sense?**
 - A. Rounds numbers up**
 - B. Rounds numbers down**
 - C. Returns the nearest whole number**
 - D. Does not affect the number**

6. Which functions are described as resource-heavy?

- A. Filtering functions**
- B. Aggregation functions**
- C. Transformation functions**
- D. Sorting functions**

7. What characterizes a Normalized Model in data architecture?

- A. A single fact table with few dimension tables**
- B. One or more fact tables and many dimension tables**
- C. A flat structure with all data combined**
- D. An unstructured format**

8. Which statement best describes the Buffer prefix syntax?

- A. Buffer loads only new data without referencing previous data**
- B. Buffer loads identify identical column names in new and existing tables**
- C. Buffer performs functions over multiple datasets simultaneously**
- D. Buffer replaces any existing tables regardless of their structure**

9. What is dimensionality in the context of data reporting?

- A. The complexity of the database schema**
- B. The number of dimensions considered in report requirements**
- C. The average size of the data**
- D. The hierarchy of data structure**

10. What does modality indicate in entity relationships?

- A. The maximum number of instances in an entity**
- B. The minimum number of times an instance in one entity can be associated with instances in another**
- C. The average number of instances in a relationship**
- D. The total number of entities involved in a relationship**

Answers

SAMPLE

1. B
2. B
3. C
4. B
5. B
6. B
7. B
8. B
9. B
10. B

SAMPLE

Explanations

SAMPLE

1. Which chart combines both absolute and relative values?

- A. Bar chart
- B. Combo chart**
- C. Line chart
- D. Pie chart

The combination chart, also known as a **combo chart**, effectively visualizes data in a way that represents both absolute and relative values. This is particularly useful when you want to illustrate different data sets that may have different scales or units but are nonetheless related. For instance, in a **combo chart**, you might display sales revenue using bars as absolute values while overlaying sales growth percentage as a line, showcasing relative changes over time. This dual representation allows users to quickly grasp trends and compare performance on both a numerical and percentage basis within the same visual. It enhances the data interpretation by providing a comprehensive view, making it clear how absolute numbers and relative proportions relate to one another. In contrast, other chart types such as bar, line, and pie charts typically focus on either absolute values or relative proportions but do not blend both within a single chart. A bar chart typically displays only absolute values, while a line chart is primarily concerned with trends over a period, and a pie chart represents parts of a whole without displaying trends or other absolute values. Thus, the **combo chart** stands out as the optimal choice for combining both types of data representation.

2. In string manipulation, which function is used to repeats an input string?

- A. Left fcn
- B. Repeat fcn**
- C. TextBetween fcn
- D. Qualify fcn

The function used to repeat an input string is the **Repeat** function. This function allows you to specify a string and the number of times you want it to be repeated. It is particularly useful when you need to generate a string that consists of a repeated sequence, such as creating visual elements or formatted text in reports where duplication of certain characters or words is required. In contrast, the **Left** function primarily extracts a specified number of characters from the start of a string, while the **TextBetween** function is designed to retrieve a substring located between two specified delimiters. The **Qualify** function is used to ensure that field names in Qlik are unique by adding a prefix, and it does not manipulate strings in the context of repetition. Thus, the **Repeat** function is the appropriate choice for tasks involving the repetition of strings.

3. What type of comparison does the WildMatch function support?

- A. Case sensitive comparison
- B. Numerical comparison only
- C. Case insensitive comparison with wildcards**
- D. Exact match comparison

The WildMatch function is designed to support case insensitive comparison using wildcards. This means that it can match patterns within strings by using characters such as asterisks (*) to represent any sequence of characters or question marks (?) to represent any single character. The case insensitive nature of the function allows it to match letters regardless of their casing—meaning, for example, "abc" will match with "ABC" without any issue. This flexibility in pattern matching is particularly useful for scenarios where data may have inconsistent casing or where the exact format of the text may vary but still conveys the same underlying value. In contrast, options referring to case sensitive comparison would not apply since WildMatch inherently disregards letter case. Similarly, the function is not limited to numerical comparisons; instead, it allows for string matching with wildcards. Exact match comparisons do not utilize wildcards and would not harness the capabilities that WildMatch provides for flexible pattern matching. Consequently, the correct answer reflects the function's utility in performing robust and versatile string comparisons that incorporate wildcards in a case insensitive manner.

4. Which process is involved in creating composite keys in ETL?

- A. Extract phase
- B. Transform phase**
- C. Load phase
- D. Data preparation phase

Creating composite keys is primarily a function of the Transform phase in the ETL (Extract, Transform, Load) process. During the Transform phase, data undergoes various operations like cleaning, aggregating, and reformatting to prepare it for analysis. A composite key is formed when two or more fields are combined to create a unique identifier for records in a dataset. In this context, the main purpose of using composite keys is to ensure the uniqueness of records, which is vital when consolidating data from multiple sources that may have overlapping or similar values. By creating composite keys during the Transform phase, you can effectively handle scenarios such as merging tables or managing relationships between them. This ensures that the dataset maintains its integrity and that each record can be uniquely identified in downstream processes. The other phases—Extract, Load, and Data preparation—do not primarily focus on the creation of composite keys. The Extract phase is about pulling data from various sources, the Load phase involves storing the transformed data into a target system, and the Data preparation phase is typically broader than just key creation, often involving initial cleaning and shaping of data before deeper transformations occur.

5. What does the Floor function do when used in Qlik Sense?

- A. Rounds numbers up
- B. Rounds numbers down**
- C. Returns the nearest whole number
- D. Does not affect the number

The Floor function in Qlik Sense is designed to round numbers down to the nearest whole number or specified precision. Its primary purpose is to ensure that when a value is processed, it will always result in the largest integer less than or equal to that value. For example, applying the Floor function to the number 3.7 would return 3, while applying it to -2.3 would return -3, effectively truncating any fractional part and moving towards the lower bound. This function is particularly useful in scenarios where you want to categorize data into whole numbers, such as assigning values to bins or creating discrete groups from continuous data. By consistently rounding down, the Floor function guarantees that you are working with integers that can be reliably used for further calculations or visual representations. While the other choices suggest different behaviors — rounding up, returning the nearest whole number, or having no effect at all — the specific use of the Floor function is accurately described by the ability to round down, making it a valuable tool in the data preparation process within Qlik Sense.

6. Which functions are described as resource-heavy?

- A. Filtering functions
- B. Aggregation functions**
- C. Transformation functions
- D. Sorting functions

Aggregation functions are described as resource-heavy because they involve processing large volumes of data to summarize or compute metrics based on that data. When an aggregation function is applied, especially over large data sets, it typically requires significant memory and CPU resources to calculate the results. These functions require the system to evaluate the data in order to produce a single output for potentially many input records, which can lead to increased computational strain. In the context of data operations, filtering and transformation functions may also require processing resources, but they generally do not impose the same level of resource demand as aggregation functions because filtering typically selects a subset of data based on criteria without needing to summarize it, and transformation applies changes without necessarily condensing the data. Sorting functions, while they can also be resource-intensive depending on the size of the dataset, operate differently by ordering data rather than aggregating it. Therefore, the classification of aggregation functions as resource-heavy aligns with their nature of summarizing data, which inherently makes them more demanding in terms of computational resources.

7. What characterizes a Normalized Model in data architecture?

- A. A single fact table with few dimension tables**
- B. One or more fact tables and many dimension tables**
- C. A flat structure with all data combined**
- D. An unstructured format**

A normalized model in data architecture is characterized by the organization of data into multiple tables that minimize redundancy and ensure data integrity. The approach typically involves having one or more fact tables that hold quantitative data for analysis, along with several dimension tables that provide context to that data, such as attributes related to the facts. In this model, dimension tables are designed to be connected to the fact tables through keys, allowing for efficient querying and reporting. This structure supports a clear distinction between different types of data, helping users to maintain a clean and manageable database design. It is well-suited for transactional databases where updates, insertions, and deletions occur frequently, as it helps to maintain data accuracy and reduces the risk of anomalies. The other options describe different types of data models. A single fact table with few dimension tables indicates a denormalized model or a simple structure rather than a comprehensive normalized one. A flat structure with all data combined typically refers to a denormalized approach, where data from multiple tables is merged into one large table, which can make data management less efficient. An unstructured format does not apply to normalized models, as they rely on a structured approach to data organization.

8. Which statement best describes the Buffer prefix syntax?

- A. Buffer loads only new data without referencing previous data**
- B. Buffer loads identify identical column names in new and existing tables**
- C. Buffer performs functions over multiple datasets simultaneously**
- D. Buffer replaces any existing tables regardless of their structure**

The statement about Buffer prefix syntax is best captured by the notion that Buffer loads identify identical column names in new and existing tables. This feature is particularly useful in data loading processes where you want to ensure that new data is integrated correctly with existing data, adhering to the same schema. By recognizing columns with identical names, the Buffer syntax effectively manages how data is appended or updated, maintaining consistency and coherence in your data model. Choosing this description highlights the importance of structured data management, especially in scenarios where there may be overlapping data characteristics. By focusing on identical column names, the Buffer prefix can optimize data loads and ensure that the relationships and structures within the data remain robust and reliable. The other options do not accurately capture the primary function of the Buffer prefix syntax. For instance, while loading only new data or performing functions over multiple datasets might be desirable in certain contexts, they do not reflect the specific capability that Buffer syntax offers. Similarly, the notion of replacing tables disregards the nuanced approach to data integrity that Buffer provides by working with existing schemas.

9. What is dimensionality in the context of data reporting?

- A. The complexity of the database schema
- B. The number of dimensions considered in report requirements**
- C. The average size of the data
- D. The hierarchy of data structure

Dimensionality in the context of data reporting primarily refers to the number of different dimensions or perspectives that are analyzed when generating reports. Dimensions in data reporting are essentially categories through which data can be segmented, viewed, or sliced. These dimensions might include attributes like time, geography, product categories, or customer demographics. By understanding the number of dimensions involved, data architects and analysts can create more effective and insightful reports. It allows for a multi-faceted view of the data, enabling users to drill down and gain deeper insights based on different aspects of the data. In contrast, the complexity of the database schema refers to how the data structures are organized and does not directly describe how many dimensions are considered in reports. The average size of the data speaks to data volume, which isn't relevant to the dimensionality of reporting. The hierarchy of data structure pertains to how data relationships are organized, rather than the count of dimensions analyzed during reporting. In summary, focusing on the number of dimensions significantly enhances the analytical depth of reports, making it a fundamental concept in data reporting.

10. What does modality indicate in entity relationships?

- A. The maximum number of instances in an entity
- B. The minimum number of times an instance in one entity can be associated with instances in another**
- C. The average number of instances in a relationship
- D. The total number of entities involved in a relationship

Modality in entity relationships refers to the minimum number of times an instance in one entity can be associated with instances in another entity. This concept is crucial in understanding how entities relate to each other in a database structure. For instance, in a relationship between a "Customer" entity and an "Order" entity, modality helps determine whether a customer is required to have at least one order. If the modality is defined as "at least one," it indicates that a customer must have at least one associated order. Conversely, if the minimum is defined as "zero," it suggests that a customer can exist without placing any orders. Understanding modality is essential for designing robust database schemas and ensures that the relationships between entities reflect the real-world connections accurately. This aspect of database design helps in enforcing data integrity and clarity in relationships, which is vital for analytical and operational purposes in data management.

Next Steps

Congratulations on reaching the final section of this guide. You've taken a meaningful step toward passing your certification exam and advancing your career.

As you continue preparing, remember that consistent practice, review, and self-reflection are key to success. Make time to revisit difficult topics, simulate exam conditions, and track your progress along the way.

If you need help, have suggestions, or want to share feedback, we'd love to hear from you. Reach out to our team at hello@examzify.com.

Or visit your dedicated course page for more study tools and resources:

<https://qilksensedataarchitect.examzify.com>

We wish you the very best on your exam journey. You've got this!

SAMPLE